Le Mixer Geek Theremin+ est un instrument de musique électronique amusant et innovant, inspiré du Theremin classique. Contrairement aux instruments traditionnels, le Theremin+ se joue sans contact physique, par des mouvements des mains dans l'air pour contrôler la hauteur et le volume.
Le Theremin+ offre une façon passionnante et pratique d'explorer la musique et l'expérimentation sonore.
Caractéristiques
Prêt à l'emploi dès sa sortie de l'emballage
Équipé d'un haut-parleur et d'un écran couleur
Navigation et confirmation intuitives par boutons
Choisissez parmi plus de 70 sonorités
Nombreuses fonctions personnalisables
Affichage de la forme d'onde, de la durée, de la fréquence, du volume et de la hauteur de note correspondante (l'affichage peut être désactivé)
Alimenté par port USB-C ; compatible avec les batteries externes
Conception compacte avec antenne télescopique amovible pour un rangement facile
Se connecte à un casque, des enceintes externes ou des appareils d'enregistrement
Dimensions : 98 x 70 x 18 mm
Inclus
1x Theremin+ Instrument de musique
2x Antennes
1x Câble USB-C
Spécifications Capteur de caméra 324x324 pixels : utilisez l'un des cœurs de Portenta pour exécuter des algorithmes de reconnaissance d'images en utilisant l'éditeur OpenMV pour Arduino Connecteur Ethernet 100 Mbps : connectez votre Portenta H7 à l'Internet filaire 2 microphones embarqués pour la détection des sons directionnels : capturez et analysez le son en temps réel Connecteur JTAG : effectuez un débogage de bas niveau de votre carte Portenta ou des mises à jour du firmware en utilisant un programmateur externe Connecteur carte SD : stockez vos données capturées sur la carte, ou lisez les fichiers de configuration La Vision Shield a été conçue pour s'intégrer à la famille Arduino Portenta. Ces cartes sont dotées de processeurs multicœurs 32 bits ARM® Cortex™ tournant à des centaines de mégahertz, avec des mégaoctets de mémoire de programme et de RAM. Elles sont équipées de Wi-Fi et de Bluetooth. La vision par ordinateur embarquée rendue facile Arduino s'est associé à OpenMV pour vous offrir une licence gratuite de l'EDI OpenMV, un moyen facile d'accéder à la vision par ordinateur en utilisant MicroPython comme langage de programmation. Téléchargez l'éditeur sur notre site et parcourez les exemples que nous avons préparés pour vous dans l'EDI OpenMV. Des entreprises du monde entier construisent déjà des produits basés sur cette approche simple, mais puissante, pour détecter, filtrer et classer des images, des codes QR et autres. Débogage avec des outils professionnels Connectez votre Portenta H7 à un débogueur professionnel via le connecteur JTAG. Utilisez des outils comme ceux de Lauterbach ou Segger sur votre carte pour déboguer votre code étape par étape. La Vision Shield expose les broches nécessaires pour que vous puissiez brancher votre sonde JTAG. Caméra Module caméra Himax HM-01B0 Résolution 320 x 320 active pixels actifs avec support pour QVGA Capteur d’image Haute sensibilité à la technologie 3,6μ BrightSense™ Microphone 2 x MP34DT05 Longueur 66 mm Largeur 25 mm Poids 11 gr Pour plus d'informations, consultez les tutoriels fournis par Arduino ici.
Au cœur de ce module se trouve l'ESP32-S2, un processeur Xtensa® LX7 32 bits qui fonctionne jusqu'à 240 MHz. La puce dispose d'un coprocesseur basse consommation qui peut être utilisé à la place du processeur pour économiser de l'énergie tout en effectuant des tâches qui ne nécessitent pas beaucoup de puissance de calcul, comme la surveillance des périphériques. L'ESP32-S2 intègre un riche ensemble de périphériques, allant de SPI, I²S, UART, I²C, LED PWM, TWAITM, LCD, interface caméra, ADC, DAC, capteur tactile, capteur de température, ainsi que jusqu'à 43 GPIO. Il comprend également une interface USB On-The-Go (OTG) pleine vitesse pour permettre la communication USB.
Caractéristiques
MCU
ESP32-S2 intégré, microprocesseur Xtensa® monocœur LX7 32 bits, jusqu'à 240 MHz
ROM de 128 Ko
320 Ko de mémoire SRAM
16 Ko de SRAM en RTC
Wifi
802.11b/g/n
Débit binaire : 802.11n jusqu'à 150 Mbps
Agrégation A-MPDU et A-MSDU
Prise en charge de l'intervalle de garde de 0,4 µs
Plage de fréquence centrale du canal opérationnel : 2 412 ~ 2 484 MHz
Matériel
Interfaces : GPIO, SPI, LCD, UART, I²C, I²S, interface caméra, IR, compteur d'impulsions, LED PWM, TWAI (compatible ISO 11898-1), USB OTG 1.1, ADC, DAC, capteur tactile, capteur de température
Oscillateur à cristal de 40 MHz
Flash SPI de 4 Mo
Tension de fonctionnement/Alimentation : 3,0 ~ 3,6 V
Plage de température de fonctionnement : –40 ~ 85 °C
Dimensions : 18 × 31 × 3,3 mm
Applications
Hub de capteurs IoT générique à faible consommation
Enregistreurs de données IoT génériques à faible consommation
Caméras pour le streaming vidéo
Appareils par contournement (OTT)
Périphériques USB
Reconnaissance de la parole
Reconnaissance d'images
Réseau maillé
Automatisation de la maison
Panneau de contrôle de maison intelligente
Bâtiment intelligent
L'automatisation industrielle
Agriculture intelligente
Applications audio
Applications de soins de santé
Jouets compatibles Wi-Fi
Électronique portable
Applications de vente au détail et de restauration
Machines de point de vente intelligentes
Un écran IdO de 2,7 pouces à faible consommation et à source ouverte, alimenté par un module ESP32-S2 et doté de la technologie Memory-in-Pixel (MiP) de SHARP. Le Newt est un écran mural alimenté par piles, toujours allumé, qui peut aller en ligne pour récupérer la météo, les calendriers, les résultats sportifs, les listes de choses à faire, les citations... vraiment tout ce qui se trouve sur Internet ! Il utilise un microcontrôleur ESP32-S2 que vous pouvez programmer avec Arduino, CircuitPython, MicroPython ou ESP-IDF. Il est parfait pour les makers : La technologie Memory-in-Pixel (MiP, mémoire dans les pixels) de Sharp évite les temps de rafraîchissement lents associés aux écrans E-Ink. Une horloge en temps réel a été ajoutée pour prendre en charge les minuteries et les alarmes. Le Newt a été conçu en tenant compte du fonctionnement sur batterie ; chaque composant a été choisi pour sa capacité à fonctionner à faible puissance. Le Newt a été conçu pour fonctionner « sans fil », ce qui signifie qu'il peut être installé dans des endroits où un cordon d'alimentation ne serait pas pratique, par exemple un mur, un réfrigérateur, un miroir ou un tableau effaçable à sec. Avec le support optionnel, les bureaux, les étagères et les tables de nuit sont également de bonnes options. Il est open source, et tous les fichiers et bibliothèques de conception sont disponibles pour examen, utilisation et modification. Toutefois, cela n'est pas obligatoire. Chacun est livré avec un logiciel fonctionnel comportant les fonctions suivantes : Détails de la météo actuelle Prévisions météorologiques horaires et quotidiennes Alarme Minuteur Citations inspirantes Prévision de la qualité de l’air Calendrier des habitudes Minuteur Pomodoro Carte de stratégie oblique Pour l’utiliser, il suffit de suivre les instructions pour le connecter au Wi-Fi. Aucun téléchargement d'application n'est nécessaire. Spécifications Affichage LCD à mémoire vive Taille de l’écran 2,7 pouces Résolution 240 x 400 Courant de veille 30 μA Taux de rafraichissement Rafraîchissement périodique de l'écran requis Non Boutons d’entrée 10 boutons capacitifs, 1 bouton-poussoir RTC inclus Oui Haut-parleurs inclus Oui Entrée d’alimentation USB Type-C Batterie incluse Non Languages de programmation Arduino, CircuitPython, ESP IDF, MicroPython Dimensions 91 x 61 x 9 mm Microcontrôleur Module expressif ESP32-S2-WROVER avec 4 Mo de flash et 2 Mo de PSRAM Compatible Wi-Fi Supporte Arduino, MicroPython, CircuitPython, et ESP-IDF Courant de veille profonde aussi faible que 25 μA Affichage Mémoire en pixels LCD 2,7 pouces, 240 x 400 pixels Capable de fournir un contenu à haut contraste, haute résolution et faible latence avec une consommation d’énergie ultra-faible Le mode réfléchissant exploite la lumière ambiante pour éliminer le besoin d’un rétroéclairage Chronométrage, minuteries et alarmes Horloge temps reel (RTC) Micro Crystal RV-3028-C7 Optimisé pour une consommation extrêmement faible (45 μA) Capable de gérer simultanément une minuterie périodique, un compte à rebours et une alarme Interruption matérielle pour les minuteries et les alarmes 43 octets de mémoire utilisateur non volatile, 2 octets de RAM utilisateur Compteur de temps UNIX séparé Audio Haut-parleur/ronfleur avec mini amplificateur classe D sur la sortie A0 du CNA, pouvant jouer des tonalités ou des clips audio lo-fi. Entrée utilisateur Interrupteur d’alimentation Deux boutons tactiles programmables pour réinitialiser et démarrer 10 pavés tactiles capacitifs Alimentation Newt est conçu pour fonctionner pendant un à deux mois entre les charges en utilisant une batterie lipo de 500 mAh. Cette durée varie (une utilisation intensive du Wi-Fi, en particulier, déchargera plus rapidement la batterie). Connecteur USB de type C pour la programmation, l'alimentation et la charge Régulateur de tension à mode de fonctionnement vert (TOREX XC6220) qui peut sortir 1 A de courant et fonctionner à partir de 8 μA Connecteur JST pour une batterie Lithium-Ion Chargeur de batterie (MCP73831) Indicateur de batterie faible (courant de repos de 1 μA) Logiciel Le matériel Newt est compatible avec les bibliothèques open source Arduino pour ESP32-S2, Adafruit GFX (polices de caractères), Adafruit Sharp Memory Display, et RTC RV-3028-C7 (RTC) Les bibliothèques Arduino et les exemples de programmation sont disponibles dans le dépôt GitHub du fabricant Les bibliothèques CircuitPython et l'enregistrement sont sur la feuille de route, incluant une bibliothèque CircuitPython pour l'horloge en temps réel RV-3028 Inclus dans le colis Phambili Newt – entièrement assemblé avec firmware préchargé Support de bureau découpé au laser Pieds à mini-aimant La visserie nécessaire Support et documentation Instructions complètes d’utilisation (En anglais) GitHub: bibliothèque et base de code Arduino (En anglais) GitHub: schémas de la carte (En anglais) Vidéos de prototypes ou de démonstrations (build tracked on Hackaday. En anglais)
Caractéristiques
Microcontrôleur ATmega328 avec chargeur de démarrage Optiboot (UNO)
Tension d'entrée : 7 V - 15 V
Sorties 0V - 5V avec entrées compatibles 3,3V
6 entrées analogiques
14 broches d'E/S numériques (6 sorties PWM) En-tête du FAI
Vitesse d'horloge de 16 MHz
Mémoire Flash 32 Ko
Compatible avec le bouclier R3
Construction entièrement CMS
Programmation USB facilitée par l'omniprésent FTDI FT231X
PCB rouge
Le SparkFun RedBoard combine la stabilité du FTDI, la simplicité du chargeur de démarrage Optiboot de l'Uno et la compatibilité du bouclier R3 de l'Uno R3.
RedBoard dispose des périphériques matériels auxquels vous êtes habitué :
6 entrées analogiques
14 broches d'E/S numériques (6 broches PWM)
IPS
UART
Interruptions externes
Ici, vous pouvez télécharger les derniers pilotes VCP pour les appareils FTDI.
Consultez également le référentiel GitHub proposé par SparkFun.
Au cœur de ce module se trouve l'ESP32-S2, un processeur Xtensa® LX7 32 bits qui fonctionne jusqu'à 240 MHz. La puce dispose d'un coprocesseur basse consommation qui peut être utilisé à la place du processeur pour économiser de l'énergie tout en effectuant des tâches qui ne nécessitent pas beaucoup de puissance de calcul, comme la surveillance des périphériques. L'ESP32-S2 intègre un riche ensemble de périphériques, allant de SPI, I²S, UART, I²C, LED PWM, TWAITM, LCD, interface caméra, ADC, DAC, capteur tactile, capteur de température, ainsi que jusqu'à 43 GPIO. Il comprend également une interface USB On-The-Go (OTG) pleine vitesse pour permettre la communication USB.
Caractéristiques
MCU
ESP32-S2 intégré, microprocesseur Xtensa® monocœur LX7 32 bits, jusqu'à 240 MHz
ROM de 128 Ko
320 Ko de mémoire SRAM
16 Ko de SRAM en RTC
Wifi
802.11b/g/n
Débit binaire : 802.11n jusqu'à 150 Mbps
Agrégation A-MPDU et A-MSDU
Prise en charge de l'intervalle de garde de 0,4 µs
Plage de fréquence centrale du canal opérationnel : 2 412 ~ 2 484 MHz
Matériel
Interfaces : GPIO, SPI, LCD, UART, I²C, I²S, interface caméra, IR, compteur d'impulsions, LED PWM, TWAI (compatible ISO 11898-1), USB OTG 1.1, ADC, DAC, capteur tactile, capteur de température
Oscillateur à cristal de 40 MHz
Flash SPI de 4 Mo
Tension de fonctionnement/Alimentation : 3,0 ~ 3,6 V
Plage de température de fonctionnement : –40 ~ 85 °C
Dimensions : 18 × 31 × 3,3 mm
Applications
Hub de capteurs IoT générique à faible consommation
Enregistreurs de données IoT génériques à faible consommation
Caméras pour le streaming vidéo
Appareils par contournement (OTT)
Périphériques USB
Reconnaissance de la parole
Reconnaissance d'images
Réseau maillé
Automatisation de la maison
Panneau de contrôle de maison intelligente
Bâtiment intelligent
L'automatisation industrielle
Agriculture intelligente
Applications audio
Applications de soins de santé
Jouets compatibles Wi-Fi
Électronique portable
Applications de vente au détail et de restauration
Machines de point de vente intelligentes
Le circuit imprimé noir mat est très épais et comporte de subtiles marques blanches, notamment une grille alphanumérique et des étiquettes PIN. Le schéma de câblage – celui des planches à pain classiques – est facile à voir en regardant les traces exposées au bas de la carte.
Le kit est livré complet avec le support « Integrated Circuit Leg » et 8 bornes à vis à code couleur. À l'aide des bornes et des points de soudure, vous pouvez connecter votre « IC » avec des fils nus, des cosses, des pinces crocodiles et/ou des joints de soudure. Les connexions aux 8 bornes se font via les barrettes à trois positions sur le PCB ; chacun est étiqueté avec le code PIN correspondant.
Caractéristiques
Support en aluminium anodisé
Inserts filetés à pression de taille 8 à 32 (8 pièces) préinstallés dans le protoboard
Tous les matériaux (y compris le circuit imprimé et le support) sont conformes à RoHS (sans plomb)
Vis à filetage trilobulaire (6 pièces, noires, filetage 6-32) et entretoises pour le montage du support.
Dimensions : 13,25 x 8,06 x 2,54 mm
Dimensions assemblé : 13,25 x 9,9 x 4,3 cm
Le Milk-V Duo 256M est une plateforme de développement embarquée ultra-compacte basée sur la puce SG2002. Il peut exécuter Linux et RTOS, fournissant ainsi une plate-forme fiable, peu coûteuse et hautes performances pour les professionnels, les ODM industriels, les passionnés d'AIoT, les bricoleurs et les créateurs.
Cette carte est une version améliorée de Duo avec une augmentation de mémoire à 256 Mo, destinée aux applications exigeant des capacités de mémoire plus importantes. Le SG2002 élève la puissance de calcul à 1,0 TOPS @ INT8. Il permet une commutation transparente entre les architectures RISC-V/ARM et prend en charge le fonctionnement simultané de deux systèmes. De plus, il comprend une gamme d'interfaces GPIO riches telles que SPI, UART, adaptées à un large éventail de développements matériels dans la surveillance intelligente de pointe, notamment des caméras TIP, des judas intelligents, des sonnettes visuelles, et bien plus encore.
SG2002 est une puce hautes performances à faible consommation conçue pour divers domaines de produits tels que les caméras IP de surveillance intelligente de pointe, les serrures de porte intelligentes, les sonnettes visuelles et l'intelligence domestique. Il intègre la compression et le décodage vidéo H.264, l'encodage de compression vidéo H.265 et les capacités du FAI. Il prend en charge plusieurs algorithmes d'amélioration et de correction d'image tels que la large plage dynamique HDR, la réduction du bruit 3D, le désembuage et la correction de la distorsion de l'objectif, offrant aux clients une qualité d'image vidéo de qualité professionnelle.
La puce intègre également un TPU auto-développé, offrant une puissance de calcul de 1,0 TOPS pour des opérations sur des nombres entiers de 8 bits. Le moteur de planification TPU spécialement conçu fournit efficacement un flux de données à large bande passante pour tous les cœurs de l'unité de traitement tensoriel. De plus, il offre aux utilisateurs un puissant compilateur de modèles d’apprentissage en profondeur et un kit de développement de SDK logiciels. Les principaux frameworks d'apprentissage profond tels que Caffe et Tensorflow peuvent être facilement portés sur sa plate-forme. En outre, il inclut le démarrage de sécurité, les mises à jour sécurisées et le cryptage, fournissant une série de solutions de sécurité allant du développement à la production de masse jusqu'aux applications de produits.
La puce intègre un sous-système MCU 8 bits, remplaçant le MCU externe typique pour atteindre les objectifs d'économie de coûts et d'efficacité énergétique.
Spécifications
SoC
SG2002
RISC-V CPU
C906 @ 1 Ghz + C906 @ 700 MHz
Arm CPU
1x Cortex-A53 @ 1 GHz
MCU
8051 @ 6 Ko SRAM
Mémoire
256 Mo de DRAM SIP
TPU
1.0 TOPS @ INT8
Stockage
1x Connecteur microSD ou 1x SD NAND intégré
USB
1x USB-C pour l'alimentation et les données, USB Pads disponibles
CSI
1x Connecteur FPC 16P (MIPI CSI 2 voies)
Prise en charge des capteurs
5 M @ 30 ips
Ethernet
Ethernet 100 Mbit/s avec PHY
Audio
Via des pads GPIO
GPIO
Jusqu'à 26x pads GPIO
Puissance
5 V/1 A
Support du système d'exploitation
Linux, RTOS
Dimensions
21 x 51 mm
Téléchargements
Documentation
GitHub
Caractéristiques
Tension de fonctionnement : 3,3 V
Microcontrôleur ESP-12E
Taille de l'écran : 1,28 pouces
Port USB pour l'alimentation et le transfert de données
Broches d'interface : 4 GPIO, 1 GND, 1 alimentation
Pilote : GC9A01
Résolution 240 x 240 pixels
Couleur: 65K RVB
Interface : SPI
Téléchargements
Fichier STEP
Dimensions
Fichier 3D
Schématique
GitHub
Ce module de caméra adopte une puce de capteur SmartSens SC3336 avec une résolution de 3 MP. Il présente une sensibilité élevée, un SNR élevé et des performances de faible luminosité et il est capable d'un effet d'imagerie de vision nocturne plus délicat et plus vif, et peut mieux s'adapter aux changements de lumière ambiante. En outre, il est compatible avec les cartes de la série Luckfox Pico.
Caractéristiques
Capteur
Capteur : SC3336
Taille CMOS : 1/2,8"
Pixels : 3 MP
Résolution statique : 2304x1296
Fréquence d'images vidéo maximale : 30 ips
Volet : Volet roulant
Lentille
Distance focale : 3,95 mm
Ouverture : F2.0
Champ de vision : 98,3 ° (diagonale)
Distorsion : <33 %
Mise au point : mise au point manuelle
Téléchargements
Wikia
Le LuckFox Pico Ultra est un ordinateur monocarte compact (SBC) équipé du chipset Rockchip RV1106G3, conçu pour le traitement de l'IA, le multimédia et les applications embarquées basse consommation.
Il est équipé d'un processeur NPU 1 TOPS intégré, ce qui le rend idéal pour les charges de travail d'IA de pointe. Avec 256 Mo de RAM, 8 Go de stockage eMMC intégré, le Wi-Fi intégré et la prise en charge du module PoE LuckFox, la carte offre performances et polyvalence pour une large gamme d'utilisations.
Sous Linux, la LuckFox Pico Ultra prend en charge diverses interfaces, notamment MIPI CSI, RGB LCD, GPIO, UART, SPI, I²C et USB, offrant ainsi une plateforme de développement simple et efficace pour les applications de domotique, de contrôle industriel et d'IoT.
Spécifications
Puce
Rockchip RV1106G3
Processeur
Cortex-A7 1,2 GHz
Processeur de réseau neuronal (NPU)
1 TOPS, compatible int4, int8, int16
Processeur d'image (ISP)
Entrée max. 5 Mo à 30fps
Mémoire
256 Mo DDR3L
Wi-Fi + Bluetooth
WiFi-6 2,4 GHz Bluetooth 5.2/BLE
Interface caméra
MIPI CSI 2 voies
Interface DPI
RGB666
Interface PoE
IEEE 802.3af PoE
Interface haut-parleur
MX1,25 mm
USB
Hôte/Périphérique USB 2.0
GPIO
30 GPIO Broches
Ethernet
Contrôleur Ethernet 10/100M et PHY intégré
Support de stockage par défaut
eMMC (8 Go)
Inclus
1x LuckFox Pico Ultra W
1x Module PoE LuckFox
1x Antenne IPX 2,4G 2 dB
1x Câble USB-A vers USB-C
1x Sachet de vis
Téléchargements
Wiki
Si vous cherchez un moyen simple de vous lancer dans la soudure ou si vous souhaitez simplement fabriquer un petit gadget portable, cet ensemble est une excellente opportunité. "LED cube" est un ensemble éducatif pour apprendre les techniques de soudure, avec lequel vous obtenez à la fin un petit jeu électronique. Après avoir allumé et secoué cette planche, certaines LED s'allumeront de manière aléatoire et symboliseront le numéro, comme si un vrai chiffre avait été lancé.
Il est basé sur le microcontrôleur Attiny404, programmé dans Arduino, et il y a une batterie à l'arrière qui rend ce gadget portable. Il y a aussi un porte-clés pour que vous puissiez toujours emporter votre nouveau jeu avec vous ! La soudure est facile selon les marquages sur la carte.
Inclus
1x carte de circuit imprimé
1x microcontrôleur ATtiny404
7x LED
7x résistances (330 ohms)
1x résistance (10 kohm)
1x support de batterie
1x pile CR2032
1x interrupteur
1x capteur de vibrations SW-18020P
1x anneau porte-clés
The FRDM-MCXN947 is a compact and versatile development board designed for rapid prototyping with MCX N94 and N54 microcontrollers. It features industry-standard headers for easy access to the MCU's I/Os, integrated open-standard serial interfaces, external flash memory, and an onboard MCU-Link debugger.
Spécifications
Microcontroller
MCX-N947 Dual Arm Cortex-M33 cores @ 150 MHz each with optimized performance efficiency, up to 2 MB dual-bank flash with optional full ECC RAM, External flash
Accelerators: Neural Processing Unit, PowerQuad, Smart DMA, etc.
Memory Expansion
*DNP Micro SD card socket
Connectivity
Ethernet Phy and connector
HS USB-C connectors
SPI/I²C/UART connector (PMOD/mikroBUS, DNP)
WiFi connector (PMOD/mikroBUS, DNP)
CAN-FD transceiver
Debug
On-board MCU-Link debugger with CMSIS-DAP
JTAG/SWD connector
Sensor
P3T1755 I³C/I²C Temp Sensor, Touch Pad
Expansion Options
Arduino Header (with FRDM expansion rows)
FRDM Header
FlexIO/LCD Header
SmartDMA/Camera Header
Pmod *DNP
mikroBUS
User Interface
RGB user LED, plus Reset, ISP, Wakeup buttons
Inclus
1x FRDM-MCXN947 Development Board
1x USB-C Cable
1x Quick Start Guide
Téléchargements
Datasheet
Block diagram
Le Challenger RP2040 WiFi est un petit ordinateur embarqué équipé d'un module WiFi, dans le format populaire Adafruit Feather. Il est basé sur un microcontrôleur RP2040 de la Fondation Raspberry Pi, qui est un Cortex-M0+ à double cœur pouvant fonctionner à une fréquence de 133 MHz. Le RP2040 est associé à une mémoire flash haute vitesse de 8 Mo capable de fournir des données à la vitesse maximale. La mémoire flash peut être utilisée à la fois pour stocker des instructions pour le microcontrôleur et des données dans un système de fichiers. Le fait de disposer d'un système de fichiers facilite le stockage des données dans une approche structurée et facile à programmer. Le module peut être alimenté par une batterie au lithium-polymère connectée par un connecteur standard de 2,0 mm sur le côté de la carte. Un circuit de charge interne vous permet de charger votre batterie rapidement et en toute sécurité. L'appareil est livré avec une résistance de programmation qui règle le courant de charge à 250 mA. Cette résistance peut être remplacée par l'utilisateur pour augmenter ou diminuer le courant de charge, en fonction de la batterie utilisée. La section WiFi de cette carte est basée sur la puce ESP8285 d'Espressif qui est en fait une ESP8266 avec 1 Mo de mémoire flash intégrée dans la puce, ce qui en fait un module WiFi complet ne nécessitant que très peu de composants externes. La ESP8285 est connectée au microcontrôleur par un port série et le fonctionnement est contrôlé par un ensemble de commandes AT standardisées. Spécifications Microcontrôleur RP2040 du Raspberry Pi (Cortex-M0+ double cœur 133 MHz) SPI Un canal SPI I²C Un canal I²C UART Un canal UART (le second UART est utilisé pour la puce WiFi) Entrées analogiques 4 entrées analogiques Contrôleur WLAN ESP8285 d'Espressif (160 MHz single-core Tensilica L106) Mémoire flash 8 Mo, 133 MHz Mémoire SRAM 264 Ko (divisé en 6 banques) Contrôleur USB 2.0 Jusqu'à 12 MBit/s à pleine vitesse (USB 1.1 PHY intégré) Connecteur de batterie JST Pas de 2,0 mm Chargeur LiPo intégré Courant de charge standard de 250 mA LED NeoPixel intégrée LED RVB Dimensions de l'appareil 51 x 23 x 3,2 mm Poids 9 g Téléchargements Fiche technique Fiches de conception Errata des produits
Bluno est le premier de son genre à intégrer le module Bluetooth 4.0 (BLE) dans Arduino Uno, ce qui en fait une plateforme de prototypage idéale pour les développeurs de logiciels et de matériel pour utiliser le BLE. Vous pourrez développer votre propre bracelet intelligent, votre podomètre intelligent, etc. Grâce à la technologie Bluetooth 4.0 à faible puissance, la communication à faible énergie en temps réel peut être rendue vraiment facile.
Bluno intègre une puce TI CC2540 BT 4.0 avec l'Arduino Uno. Il permet la programmation sans fil via BLE, prend en charge Bluetooth HID, la commande AT pour configurer BLE et vous pouvez mettre à jour le micrologiciel BLE facilement. Bluno est également compatible avec toutes les broches "Arduino Uno", ce qui signifie que tout projet réalisé avec Uno peut directement passer au sans fil !
Caractéristiques
Puce BLE embarquée : TI CC2540
Programmation sans fil via BLE
Prise en charge de la commande AT pour configurer le BLE
Communication transparente via la liaison série
Mise à niveau du micrologiciel BLE facilement
Alimentation CC : Alimentation USB ou externe 7~12 V CC
Microcontrôleur : Atmega328
Bootloader : Arduino Uno ( déconnecter tout dispositif BLE avant de télécharger un nouveau sketch)
Compatible avec les broches de l'Arduino Uno
Taille : 60 x 53 mm(2,36 x 2,08 pouces)
Poids : 30 g
GrovePi+ est empilé sur le Raspberry Pi sans avoir besoin d’autres connexions. La communication entre les deux s'effectue via l'interface I2C. Tous les modules Grove se connectent aux connecteurs universels Grove du blindage GrovePi+ via le câble de connecteur universel à 4 broches.
Les modules Grove fonctionnent sur des signaux analogiques et numériques et peuvent être connectés directement au microcontrôleur ATMEGA328 du Grove Pi+. Le microcontrôleur fait office d'interprète entre le Raspberry Pi et les capteurs Grove. Il envoie, reçoit et exécute les commandes envoyées par le Raspberry Pi.
Caractéristiques
Une carte GrovePi+ avec 12 capteurs Grove populaires et 10 câbles Grove
GrovePi+ est compatible avec Raspberry Pi A+, B, B+ / 2, 3, 4.
Certifié CE et compatible avec Linux et Win 10 IoT.
Inclus
1 x Grove Pi+ 1 x Grove - Capteur d'angle rotatif
1 x Grove - Capteur sonore
1 x Grove - Rétroéclairage LCD RVB
1 x Grove - Capteur de température et d'humidité
1 x Grove - LED rouge
1 x Grove - Capteur de lumière
1 x Grove - Buzzer
1 x Grove - Relais
1 x Grove - LED bleue
1 x Grove - Bouton
1 x guide GrovePi+
10x câbles
1 x Grove - UItrasonic Ranger
1 x Grove - LED verte
Le capteur de vibrations Grove Piezo convient aux mesures de flexibilité, de vibration, d'impact et de toucher. Le module est basé sur le capteur de film PZT LDT0-028. Lorsque le capteur se déplace d'avant en arrière, une certaine tension sera créée par le comparateur de tension à l'intérieur de celui-ci. Par conséquent, produit des niveaux élevés et faibles. Malgré sa grande réceptivité aux impacts violents, une large plage dynamique (0,001 Hz ~ 1 000 MHz) garantit également d'excellentes performances de mesure. Enfin, vous pouvez régler sa sensibilité en réglant le potentiomètre avec une vis.
Caractéristiques
Douille grossière standard
Large plage dynamique : 0,001 Hz ~ 1 000 MHz
Sensibilité réglable
Haute réceptivité pour un impact fort
Applications
Détection des vibrations dans la machine à laver
Commutateur de réveil à faible consommation
Détection de vibrations à faible coût
Alarmes de voiture
Mouvement du corps
Systèmes de sécurité
Téléchargements
Télécharger le Wiki PDF
Grove - Capteur de vibrations piézo-électriques Eagle File
Grove - Fichier PDF schématique du capteur de vibrations piézo-électriques
Grove - Fichier PDF du circuit imprimé du capteur de vibrations piézo-électriques
Fiche technique du capteur de vibrations piézo-électriques
Le kit de support de bricolage MicroMod comprend cinq connecteurs M.2 (hauteur 4,2 mm), des vis et des entretoises afin que vous puissiez avoir toutes les pièces spéciales dont vous pourriez avoir besoin pour fabriquer votre propre carte de support. MicroMod utilise le connecteur M.2 standard. C’est le même connecteur que l’on trouve sur les cartes mères et les ordinateurs portables modernes. Il y a divers emplacements pour la « clé » en plastique sur le connecteur M.2 pour empêcher un utilisateur d’insérer un dispositif incompatible. La norme MicroMod utilise la touche « E » et modifie la norme M.2 en déplaçant la vis de montage de 4 mm sur le côté. La touche « E » est assez courante pour qu’un utilisateur puisse insérer un module Wifi compatible M.2. Cependant, parce que le support à vis ne s’aligne pas, l’utilisateur ne sécuriserait pas un dispositif incompatible dans une carte de support MicroMod. Caractéristiques : 5x Vis mécaniques Tête cruciforme Phillips #0 (mais de #00 à #1 fonctionne également) Fil : M2.5 Longueur : 3 mm 5x Entretoises compatibles SMD Reflow Filetage : M2.5 x 0.4 Hauteur : 2,5 mm Connecteurs MicroMod 5x M.2 Clé : E Hauteur : 4,2 mm Nombre d’épingles : 67 Pas : 0,5 mm
La carte de développement mikroBUS SparkFun RP2040 est une plate-forme hautes performances à faible coût avec des interfaces numériques flexibles dotées du microcontrôleur RP2040 de la Raspberry Pi Foundation. Outre la disposition des broches Thing Plus ou Feather PTH, la carte comprend également un emplacement pour carte microSD, une mémoire flash de 16 Mo (128 Mbits), un connecteur de batterie monocellulaire JST (avec un circuit de charge et un capteur de jauge de carburant), une LED RVB WS2812 adressable. , broches JTAG PTH, quatre trous de montage (vis 4-40), nos connecteurs Qwiic signature et une prise mikroBUS. La norme mikroBUS a été développée par MikroElektronika. Semblable aux interfaces Qwiic et MicroMod, la prise mikroBUS fournit une connexion standardisée pour les cartes Click supplémentaires à connecter à une carte de développement et est composée d'une paire d'embases femelles à 8 broches avec une configuration de broches standardisée. Les broches se composent de trois groupes de broches de communication (SPI, UART et I²C), de six broches supplémentaires (PWM, interruption, entrée analogique, réinitialisation et sélection de puce) et de deux groupes d'alimentation (3,3 V et 5 V).
Le RP2040 est pris en charge avec les environnements de développement multiplateformes C/C++ et MicroPython, y compris un accès facile au débogage d'exécution. Il intègre des routines de démarrage UF2 et de virgule flottante dans la puce. Bien que la puce dispose d'une grande quantité de RAM interne, la carte comprend 16 Mo supplémentaires de mémoire flash QSPI externe pour stocker le code du programme. Le RP2040 contient deux processeurs ARM Cortex-M0+ (jusqu'à 133 MHz) et propose :
264 Ko de SRAM intégrée dans six banques
6 IO dédiées pour SPI Flash (supportant XIP) 30 GPIO multifonctions :
Matériel dédié aux périphériques couramment utilisés
E/S programmables pour une prise en charge étendue des périphériques
Quatre canaux ADC 12 bits avec capteur de température interne (jusqu'à 0,5 MSa/s)
Fonctionnalité hôte/périphérique USB 1.1
Caractéristiques (Carte de développement SparkFun RP2040 mikroBUS)
Microcontrôleur RP2040 de la Raspberry Pi Foundation 18 broches GPIO multifonctions
Quatre canaux ADC 12 bits disponibles avec capteur de température interne (500 kSa/s)
Jusqu'à huit PWM à 2 canaux
Jusqu'à deux UART
Jusqu'à deux bus I²C
Jusqu'à deux bus SPI
Disposition des broches Thing Plus (ou Feather) :
28 broches PTH
Connecteur USB-C : Fonctionnalité hôte/périphérique USB 1.1
Connecteur JST 2 broches pour une batterie LiPo (non incluse) : Circuit de charge 500 mA
Connecteur JST Qwiic à 4 broches
LED :
PWR - Indicateur d'alimentation rouge 3,3 V
CHG - Indicateur jaune de charge de la batterie
25 - LED bleue d'état/test ( GPIO 25 )
WS2812 - LED RVB adressable ( GPIO 08 )
Boutons:
Boot
Reset
Broches JTAG PTH
Mémoire flash QSPI de 16 Mo
Emplacement pour carte µSD
Prise mikroBUS
Dimensions : 3,7' x 1,2'
Quatre trous de montage : Compatible vis 4-40
Téléchargements
Schématique
Fichiers Aigle
Dimensions de la carte
Guide de connexion
Page d'informations Qwiic
Référentiel matériel GitHub
Cet ensemble contient 3 buses pour les stations de reprise à air chaud telles que ZD-8922 ou ZD-8968.
Inclus
1x Buse à air chaud 79-3911
1x Buse à air chaud 79-3912
1x Buse à air chaud 79-3913
Conçu dans un souci de commodité et de sécurité, l'Ardi RFID Shield est basé sur le module EM-18, fonctionnant à une fréquence de 125 KHz. Ce bouclier vous permet d'intégrer facilement la technologie RFID (Radio Frequency Identification) dans vos projets, permettant des systèmes de contrôle d'accès transparents et d'identification.
Équipé d'un puissant relais opto-isolé à 1 canal, l'Ardi RFID Shield offre une solution de commutation fiable avec une valeur nominale CC maximale de 30 V et 10 A, ainsi qu'une valeur nominale CA de 250 V et 7 A. Que vous ayez besoin de contrôler des lumières , moteurs ou autres appareils haute puissance, ce bouclier fournit la fonctionnalité nécessaire.
De plus, l'Ardi RFID Shield est doté d'un buzzer intégré qui peut être utilisé pour le retour audio, permettant une interaction utilisateur et un retour système améliorés. Avec les LED à 2 indications intégrées, vous pouvez facilement surveiller l'état de détection de la carte RFID, l'alimentation électrique et l'activation du relais, fournissant des repères visuels clairs pour le fonctionnement de votre projet.
La compatibilité est essentielle et l'Ardi RFID Shield garantit une intégration transparente avec la plateforme Arduino Uno. Associé à un module RFID en lecture seule, ce bouclier ouvre un monde de possibilités pour des applications telles que les systèmes de contrôle d'accès, le suivi des présences, la gestion des stocks, etc.
Caractéristiques
Petit module compact RFID EM18 125 kHz intégré
Relais embarqués de haute qualité Relais avec borne à vis et interfaces NO/NC
Blindage compatible avec les MCU 3,3 V et 5 V
Alimentation à 3 LED intégrée, état marche/arrêt du relais et état de numérisation RFID
Buzzer multi-tonalité intégré pour les alertes audio
Se monte directement sur ArdiPi, Ardi32 ou d'autres cartes compatibles Arduino
Spécifications
Fréquence de fonctionnement RFID : 125 kHz
Distance de lecture : 10 cm, selon TAG
Antenne intégrée
Tension de commutation maximale du relais : 250 V AC/30 V DC
Courant de commutation maximum du relais : 7 A/10 A
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications.
Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels.
The HTCC-AB02S is a developer-friendly board with an integrated AIR530Z GPS module, ideal for quickly testing and validating communication solutions.
Features
Arduino compatible
Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262
LoRaWAN 1.0.2 support
Ultra low power design, 21 uA in deep sleep
Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching)
Good impendence matching and long communication distance
Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel
Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures
Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing
Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information
Using Air530 GPS module with GPS/Beidou Dual-mode position system support
Specifications
Main Chip
ASR6502 (48 MHz ARM Cortex-M0+ MCU)
LoRa Chipset
SX1262
Frequency
863~870 MHz
Max. TX Power
22 ±1 dBm
Max. Receiving Sensitivity
−135 dBm
Hardware Resource
2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO
Memory
128 Kb FLASH16 Kb SRAM
Power consumption
Deep sleep 21 uA
Interfaces
1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header)
Battery
3.7 V lithium battery (power supply and charging)
Solar Energy
VS pin can be connected to 5.5~7 V solar panel
USB to Serial Chip
CP2102
Display
0.96" OLED (128 x 64)
Operating temperature
−20~70°C
Dimensions
55.9 x 27.9 x 9.5 mm
Included
1x CubeCell HTCC-AB02S Development Board
1x Antenna
1x 2x SH1.25 battery connector
Downloads
Datasheet
Schematic
GPS module (Manual)
Quick start
GitHub
Le Portenta C33 est un puissant système-sur-module conçu pour les applications Internet des objets (IdO) à faible coût. Basé sur le microcontrôleur R7FA6M5BH2CBG de Renesas, cette carte partage le même facteur de forme que le Portenta H7 et est rétrocompatible avec celui-ci, la rendant entièrement compatible avec tous les shields et modules Portenta grâce à ses connecteurs haute densité.
En tant que dispositif économique, le Portenta C33 est un excellent choix pour les développeurs cherchant à créer des dispositifs et applications IdO avec un budget limité. Que vous construisiez un appareil pour la maison intelligente ou un capteur industriel connecté, le Portenta C33 offre la puissance de traitement et les options de connectivité nécessaires pour mener à bien votre projet.
Déployer rapidement des projets alimentés par l'IA devient simple et rapide avec le Portenta C33, en tirant parti d'une vaste gamme de bibliothèques logicielles prêtes à l'emploi et de croquis Arduino disponibles, ainsi que de widgets qui affichent en temps réel les données sur les tableaux de bord basés sur le cloud Arduino IoT.
Caractéristiques
Idéal pour les applications IdO à faible coût avec connectivité Wi-Fi/Bluetooth LE
Prend en charge MicroPython et d'autres langages de programmation de haut niveau
Offre une sécurité de qualité industrielle au niveau matériel et des mises à jour de micrologiciel OTA sécurisées
Tire parti des bibliothèques logicielles prêtes à l'emploi et des croquis Arduino
Parfait pour surveiller et afficher en temps réel les données sur les tableaux de bord basés sur le cloud Arduino IoT
Compatible avec les familles Arduino Portenta et MKR
Comprend des broches castellated pour les lignes d'assemblage automatiques
Performances Économiques
Fiable, sécurisé et doté d'une puissance de calcul à la hauteur de sa gamme, le Portenta C33 a été conçu pour offrir aux grandes et petites entreprises de tous les secteurs l'opportunité d'accéder à l'IdO et de bénéficier de niveaux d'efficacité supérieurs et d'automatisation.
Applications
Le Portenta C33 offre davantage d'applications que jamais aux utilisateurs, en permettant des prototypages rapides plug-and-play et en proposant une solution économique pour les projets à grande échelle dans l'industrie.
Passerelle IdO industrielle
Surveillance des machines pour suivre les taux d'OEE/OPE
Contrôle qualité et assurance en ligne
Surveillance de la consommation d'énergie
Système de contrôle des appareils
Solution de prototypage IdO prête à l'emploi
Spécifications
Microcontrôleur
Renesas R7FA6M5BH2CBG ARM Cortex-M33:
Noyau ARM Cortex-M33 jusqu'à 200 MHz
512 Ko de SRAM intégrée
2 Mo de Flash intégrée
TrustZone ARM
Moteur de chiffrement sécurisé 9
Mémoires externes
16 Mo QSPI Flash
USB-C
USB-C haute vitesse
Connectivité
Interface Ethernet 100 Mo (PHY)
Wi-Fi
Bluetooth Low Energy
Interfaces
CAN
Carte SD
ADC
GPIO
SPI
I²S
I²C
JTAG/SWD
Sécurité
Élément sécurisé NXP SE050C2
Températures de fonctionnement
-40 à +85 °C (-40 à 185 °F)
Dimensions
66,04 x 25,40 mm
Téléchargements
Fiche technique
Schémas
Le kit de démarrage Pimoroni Explorer est un terrain de jeu d'aventure électronique pour l'informatique physique basé sur la puce RP2350. Il comprend un écran LCD de 2,8 pouces, un haut-parleur, une mini planche à pain et bien plus encore. C'est idéal pour bricoler, expérimenter et construire de petits prototypes.
Caractéristiques
Mini maquette pour le câblage des composants
En-têtes de servo
Entrées analogiques
Haut-parleur intégré
De nombreuses entrées/sorties à usage général
Connecteurs pour attacher des câbles crocodiles
Connecteurs Qw/ST pour connecter des répartitions I²C
Spécificités
Alimenté par RP2350B (Dual Arm Cortex-M33 fonctionnant jusqu'à 150 MHz avec 520 Ko de SRAM)
16 Mo de mémoire flash QSPI compatible XiP
Écran LCD IPS de 2,8 pouces (320 x 240 pixels)
CI pilote : ST7789V
Luminance : 250 cd/m²
Zone active : 43,2 x 57,5 mm
Connecteur USB-C pour la programmation et l'alimentation
Mini-planche à pain
Haut-parleur piézo
6 commutateurs contrôlables par l'utilisateur
Boutons de réinitialisation et de démarrage
En-têtes GPIO faciles d'accès (6 GPIO et 3 ADC, plus alimentation et mise à la terre de 3,3 V)
6 bornes à pince crocodile (3 ADC, plus une alimentation et une masse de 3,3 V)
4 sorties servo à 3 broches
2 connecteurs Qw/ST (Qwiic/STEMMA QT)
Connecteur JST-PH à 2 broches pour ajouter une batterie
Emplacement pour cordon !
Comprend 2 pieds de support de bureau
Entièrement assemblé (aucune soudure requise)
Programmable avec C/C++ ou MicroPython
Inclus
1x Pimoroni Explorer
1x Multi-Sensor Stick : une nouvelle suite de super capteurs tout-en-un sophistiquée pour la détection de l'environnement, de la lumière et des mouvements
Sélection de LED de différentes couleurs avec lesquelles clignoter (notamment rouge, jaune, vert, bleu, blanc et RVB)
1x Ootentiomètre (pour les divertissements analogiques)
3x Interrupteurs de 12 mm avec capuchons de couleurs différentes
2x Servos à rotation continue
2x Roues de 60 mm à fixer sur vos servos
1x Support de pile AAA (piles non incluses)
1x Velcro pour coller le support de batterie à l'arrière de l'Explorer
20 Câbles de connexion broche à broche et 20x broche à prise pour établir des connexions sur votre maquette
1x Câble Qw/ST pour brancher le Multi-Sensor Stick
1x Câble USB-C en silicone
Téléchargements
GitHub
Schematic