Cartes de développement

10 produits


  • Clé USB Nordic Semiconductor nRF52840

    Clé USB Nordic Semiconductor nRF52840

    Le dongle nRF52840 est un petit dongle USB à faible coût qui prend en charge les protocoles propriétaires Bluetooth 5.3, Bluetooth mesh, Thread, ZigBee, 802.15.4, ANT et 2,4 GHz. Le dongle est le matériel cible idéal à utiliser avec nRF Connect for Desktop car il est peu coûteux mais prend toujours en charge toutes les normes sans fil à courte portée utilisées avec les appareils nordiques. Le dongle a été conçu pour être utilisé comme périphérique matériel sans fil avec nRF Connect for Desktop. Pour d'autres cas d'utilisation, veuillez noter qu'il n'y a pas de support de débogage sur le dongle, seulement un support pour la programmation de l'appareil et la communication via USB. Il est pris en charge par la plupart des applications nRF Connect for Desktop et sera automatiquement programmé si nécessaire. De plus, des applications personnalisées peuvent être compilées et téléchargées sur le dongle. Il dispose d'une LED RVB programmable par l'utilisateur, d'une LED verte, d'un bouton programmable par l'utilisateur ainsi que de 15 GPIO accessibles à partir de points de soudure crénelés le long du bord. Des exemples d'applications sont disponibles dans le SDK nRF5 sous le nom de carte PCA10059. Le dongle nRF52840 est pris en charge par nRF Connect for Desktop ainsi que par la programmation via nRFUtil. Caractéristiques Radio multiprotocole compatible Bluetooth 5.2 2Mbps Longue portée Extensions de publicité Algorithme de sélection de canal n°2 (CSA n°2) Prise en charge radio IEEE 802.15.4 Fil ZigBee Arm Cortex-M4 avec prise en charge de la virgule flottante Jeu d'instructions DSP Accélérateur cryptographique ARM CryptoCell CC310 15 GPIO disponibles via créneaux de bord Interface USB directement vers le SoC nRF52840 Antenne PCB 2,4 GHz intégrée 1 bouton programmable par l'utilisateur 1 LED RVB programmable par l'utilisateur 1 LED programmable par l'utilisateur Fonctionnement 1,7-5,5 V depuis USB ou externe Téléchargements Fiche de données Fichiers matériels

    € 19,95

    Membres € 17,96

  • BBC micro:bit v2

    BBC micro:bit v2

    Différences entre micro:bit v1 et micro:bit v2 Le BBC micro:bit v2 est équipé du BLE Bluetooth 5.0 Il dispose d'un bouton d'arrêt (appuyez et maintenez le bouton d'alimentation) Microphone MEMS avec indicateur LED Haut-parleur intégré Épingle à logo tactile Indicateur d'alimentation LED Un connecteur à bord cranté pour des connexions plus faciles.

    € 24,95

    Membres € 22,46

  •  -40% WCH CH32V307V-EVT-R1 RISC-V Development Board

    WCH CH32V307V-EVT-R1 Carte de développement RISC-V

    Carte de développement RISC-V WCH CH32V307 avec 8 ports UART contrôlés via Ethernet Le CH32V307 est un microcontrôleur interconnecté, basé sur un cœur RISC-V de 32 bits, avec une zone de pile matérielle et une entrée d'interruption rapide. Comparé au RISC-V standard, la vitesse de réponse aux interruptions est grandement améliorée. Avec des ensembles d'instructions à virgule flottante simple précision ajoutés et une zone de pile étendue, le CH32V307 a une meilleure performance, le nombre de ports U(S)ART est étendu à 8 et le nombre de minuteurs moteur est étendu à 4. Le CH32V307 fournit une interface USB2.0 haute vitesse (480 Mbps) et possède un transcepteur PHY intégré. Le MAC Ethernet est mis à niveau vers GbE et intègre un module PHY de 10M. Caractéristiques Processeur RISC-V4F, fréquence maximale de l'horloge système de 144 MHz Multiplier en un cycle et division matérielle, unité à virgule flottante matérielle (FPU) 64 Ko de SRAM, 256 Ko de Flash Tension d'alimentation : 2,5 V/3,3 V, unité GPIO alimentée indépendamment Plusieurs modes de faible consommation d'énergie : sommeil/arrêt/veille Réinitialisation à l'allumage/extinction (POR/PDR), détecteur de tension programmable (PVD) 2 contrôleurs DMA généraux, 18 canaux au total 4 amplificateurs Générateur de nombres aléatoires véritable unique (TRNG) unique 2x DAC 12 bits 2 unités ADC 16 canaux 12 bits, TouchKey 16 canaux 10 minuteurs Interface OTG USB2.0 haute vitesse Interface USB2.0 haute vitesse hôte/périphérique (PHY intégré 480 Mbps) 3 USART, 5 UART 2 interfaces CAN (2.0B actives) Interface SDIO, interface FSMC, DVP 2x I²C, 3x SPI, 2x I²S 80 ports d'E/S, pouvant être mappés sur 16 interruptions externes Unité de calcul de CRC, identifiant unique de puce de 96 bits Interface de débogage série à 2 fils Boîtiers : LQFP64M, LQFP100 Téléchargements Fiche technique GitHub

    € 19,95€ 11,95

    Membres identique

  • Pinecone BL602 Evaluation Board

    Carte d'évaluation Pinecone BL602

    Rupture de stock

    Caractéristiques Interface USB vers série intégrée Antenne PCB intégrée Alimenté par Pineseed BL602 SoC utilisant le modèle Pinenut : tampon 12S 2 Mo de mémoire Flash Connexion USB-C Convient au projet BIY de maquette Sortie LED à trois couleurs à bord Dimensions : 25,4 x 44,0 mm Remarque : le câble USB n'est pas inclus.

    Rupture de stock

    € 8,95

    Membres identique

  • Carte de développement RA-08H LoRaWAN avec RP2040 intégré et écran LCD 1,8" (868 Mhz)

    Carte de développement RA-08H LoRaWAN avec RP2040 intégré et écran LCD 1,8" (868 Mhz)

    La technologie Lora et les dispositifs Lora sont largement utilisés dans le domaine de l'Internet des objets (IoT), et de plus en plus de personnes rejoignent et apprennent le développement Lora, en faisant ainsi une partie indispensable du monde de l'IoT. Pour aider les débutants à mieux apprendre et développer la technologie Lora, une carte de développement Lora a été spécialement conçue pour les débutants, qui utilise RP2040 comme contrôleur principal et est équipée du module RA-08H qui prend en charge les protocoles Lora et LoRaWAN pour aider les utilisateurs à réaliser leur développement. RP2040 est une puce à architecture ARM Cortex-M0+ double c?ur, haute performance et basse consommation d'énergie, adaptée à l'IoT, aux robots, au contrôle, aux systèmes embarqués et à d'autres domaines d'application. RA-08H est fabriqué à partir de la puce RF ASR6601 autorisée par Semtech, qui prend en charge la bande de fréquence 868 MHz, dispose d'un MCU intégré à 32 MHz qui possède des fonctions plus puissantes que les modules RF ordinaires, et prend également en charge le contrôle par commandes AT. Cette carte conserve diverses interfaces fonctionnelles pour le développement, telles que l'interface Crowtail, le connecteur PIN à PIN qui mène aux ports GPIO, et fournit des sorties 3,3 V et 5 V, adaptées au développement et à l'utilisation des capteurs et modules électroniques couramment utilisés sur le marché. De plus, la carte réserve également une interface RS485, des interfaces SPI, I²C et UART, qui peuvent être compatibles avec plus de capteurs/modules. Outre les interfaces de développement de base, la carte intègre également certaines fonctions couramment utilisées, telles qu'un buzzer, un bouton personnalisé, des voyants d'indication tricolores rouge-jaune-vert, et un écran LCD 1,8 pouces avec interface SPI et une résolution de 128x160. Caractéristiques Utilise RP2040 comme contrôleur principal, avec deux c?urs de processeur ARM Cortex M0+ 32 bits (double c?ur), offrant une performance plus puissante Intègre le module RA-08H avec MCU de 32 MHz, prend en charge la bande de fréquence 868 MHz et le contrôle par commandes AT Ressources d'interface externe abondantes, compatibles avec les modules de la série Crowtail et d'autres modules d'interface courants sur le marché Intègre des fonctions couramment utilisées telles que le buzzer, le voyant lumineux, l'écran LCD et le bouton personnalisé, ce qui rend la création de projets plus concise et pratique Écran LCD 1,8 pouces 128x160 SPI-TFT, puce de pilote ST7735S Compatible avec Arduino/Micropython, facile à réaliser différents projets Spécifications Puce principale Raspberry Pi RP2040, 264 KB de SRAM intégrée, 4 MB de Flash intégrée sur la carte Processeur Double c?ur Arm Cortex-M0+ @ 133 MHz Bande de fréquence RA-08H 803-930 MHz Interface RA-08H Antenne externe, interface SMA ou interface de première génération IPEX Affichage LCD Écran LCD 1,8 pouces 128x160 SPI-TFT intégré sur la carte Résolution de l'écran LCD 128x160 Puce de pilote LCD ST7735S (SPI à 4 fils) Environnement de développement Arduino/MicroPython Interfaces 1x buzzer passif 4x boutons définis par l'utilisateur 6x LED programmables 1x interface de communication RS485 8x interfaces Crowtail 5 V (2x interfaces analogiques, 2x interfaces numériques, 2x UART, 2x I²C) 12x broches d'E/S universelles 5 V 14x broches d'E/S universelles 3,3 V 1x SPI commutable 3,3 V/5 V 1x UART commutable 3,3 V/5 V 3x I²C commutables 3,3 V/5 V Tension d'entrée de travail USB 5 V/1 A Température de fonctionnement -10°C à 65°C Dimensions 102 x 76,5 mm (L x l) Inclus 1x Carte de développement Lora RA-08H 1 x Antenne ressort Lora (868 MHz) 1x Antenne en caoutchouc Lora (868 Mhz) Téléchargements Wiki

    € 32,95

    Membres € 29,66

  •  -20% SwiftIO – Swift-based Microcontroller Board

    SwiftIO – Swift-based Microcontroller Board

    SwiftIO propose un compilateur Swift complet et un environnement de framework qui s'exécute sur le microcontrôleur. La carte SwiftIO est une carte de circuit électronique compacte qui exécute Swift sur du métal nu, vous offrant un système qui peut être utilisé pour contrôler toutes sortes de projets électroniques. Caractéristiques Processeur croisé NXP i.MX RT1052 avec cœur ARM Cortex-M7 à 600 MHz Flash SPI de 8 Mo, SDRAM de 32 Mo Débogueur DAPLink intégré USB intégré vers UART pour la communication série LED RVB intégrée Prise SD intégrée 46x GPIO, 12x ADC, 14x PWM, 4x UART, 2x I²C, 2x SPI, etc. De nombreuses fonctionnalités avancées supplémentaires pour répondre aux besoins des utilisateurs avancés Prise en charge du RTOS Zephyr MadMachine IDE est le premier environnement de développement intégré pour SwiftIO, qui facilite l'écriture de code Swift et son téléchargement sur la carte.

    € 74,95€ 59,95

    Membres identique

  • PÚCA DSP ESP32 Development Board

    Carte de développement PÚCA DSP ESP32

    PÚCA DSP est une carte de développement ESP32 open source et compatible Arduino pour les applications audio et de traitement du signal numérique (DSP) avec des fonctionnalités de traitement audio étendues. Il fournit des entrées audio, des sorties audio, un réseau de microphones à faible bruit, une option de haut-parleur de test intégrée, une mémoire supplémentaire, une gestion de la charge de la batterie et une protection ESD, le tout sur un petit PCB compatible avec une maquette. Synthétiseurs, installations, interface utilisateur vocale et plus encore PÚCA DSP peut être utilisé pour une large gamme d'applications DSP, y compris, mais sans s'y limiter, celles dans les domaines de la musique, de l'art, de la technologie créative et de la technologie adaptative. Les exemples liés à la musique incluent la synthèse musicale numérique, l'enregistrement mobile, les haut-parleurs Bluetooth, les microphones directionnels sans fil au niveau de la ligne et la conception d'instruments de musique intelligents. Les exemples liés à l'art incluent les réseaux de capteurs acoustiques, les installations d'art sonore et les applications de radio Internet. Les exemples liés à la technologie créative et adaptative incluent la conception d'interfaces utilisateur vocales (VUI) et l'audio Web pour l'Internet des sons. Conception compacte et intégrée PÚCA DSP a été conçu pour la portabilité. Lorsqu'il est utilisé avec une batterie rechargeable externe de 3,7 V, il peut être déployé presque n'importe où ou intégré à presque n'importe quel appareil, instrument ou installation. Sa conception est le résultat de mois d'expérimentation avec diverses cartes de développement ESP32, cartes de dérivation DAC, cartes de dérivation ADC, cartes de dérivation microphone et cartes de dérivation de connecteur audio, et – malgré sa petite taille – il parvient à fournir toutes ces fonctionnalités en un seul. conseil. Et cela sans compromettre la qualité du signal. Caractéristiques Processeur et mémoire Processeur Espressif ESP32 Pico D4 Double cœur 32 bits 80 MHz / 160 MHz / 240 MHz 4 Mo SPI Flash avec 8 Mo de PSRAM supplémentaire (édition originale) Wi-Fi sans fil 2,4 GHz 802.11b/g/n BluetoothBLE 4.2 Antenne 3D l'audio Codec audio stéréo Wolfson WM8978 Entrée ligne audio sur connecteur stéréo 3,5 mm Audio Casque / Sortie Ligne sur connecteur stéréo 3,5 mm Entrée ligne auxiliaire stéréo, sortie audio mono acheminée vers l'en-tête GPIO 2x micros MEMS Knowles SPM0687LR5H-1 Protection ESD sur toutes les entrées et sorties audio Prise en charge des fréquences d'échantillonnage de 8, 11,025, 12, 16, 22,05, 24, 32, 44,1 et 48 kHz Pilote de haut-parleur 1 W, acheminé vers l'en-tête GPIO DAC SNR 98 dB, THD -84 dB (pondération « A » à 48 kHz) ADC SNR 95 dB, THD -84 dB (pondération « A » à 48 kHz) Impédance d'entrée ligne : 1 MOhm Impédance de sortie ligne : 33 Ohms Facteur de forme et connectivité Compatible avec la planche à pain 70x24mm 11x broches GPIO réparties sur un en-tête au pas de 2,54 mm, avec accès aux deux canaux ESP32 ADC, JTAG et broches tactiles capacitives USB 2.0 sur connecteur USB Type C Pouvoir Batterie rechargeable au lithium polymère 3,7/4,2 V, USB ou source d'alimentation externe 5 V CC L'ESP32 et le codec audio peuvent être placés en modes faible consommation sous contrôle logiciel Détection du niveau de tension de la batterie Protection ESD sur le bus de données USB Téléchargements GitHub Fiche de données Gauche Campagne de fourniture de masse (comprend une FAQ) Présentation du matériel Programmation du tableau Le codec audio

    € 69,95

    Membres € 62,96

  • 01Space RP2040-0.42LCD Development Board

    Carte de développement 01Space RP2040-0.42LCD

    Carte de développement compacte compatible Arduino, MicroPython et CircuitPython alimentée par Raspberry Pi RP2040 RP2040-0.42LCD est une carte de développement hautes performances avec écran LCD intégré de 0,42' (résolution 70x40) avec interfaces numériques flexibles. Il intègre la puce du microcontrôleur RP2040 du Raspberry Pi. Le RP2040 est doté d'un processeur Arm Cortex-M0+ double cœur cadencé à 133 MHz avec 264 Ko de SRAM interne et 2 Mo de stockage flash. Caractéristiques SoC Microcontrôleur Raspberry Pi RP2040 double cœur Cortex-M0+ jusqu'à 125 MHz, avec 264 Ko de SRAM Stockage Flash SPI de 2 Mo Afficher OLED de 0,42 pouce USB 1x port USB Type-C pour l'alimentation et la programmation Expansion – Connecteur Qwiic I²C – Embases à 7 et 8 broches avec jusqu'à 11x GPIO, 2x SPI, 2x I²C, 4x ADC, 1x UART, 5 V, 3,3 V, VBAT, GND Divers – Boutons de réinitialisation et de démarrage – LED RVB, LED d'alimentation Source de courant – 5 V via port USB-C ou Vin - Broche VBAT pour l'entrée de la batterie – Régulateur 3,3 V avec sortie crête 500 mA Dimensions 23,5x18mm Poids 2,5g Téléchargements GitHub

    € 19,95

    Membres € 17,96

  • Teensy 4.1 Development Board

    Conseil de développement Teensy 4.1

    Rupture de stock

    Caractéristiques ARM Cortex-M7 à 600 MHz 2 ports USB, tous deux 480 Mbit/s Flash 2048K (64K réservés à la récupération et à l'émulation EEPROM) 1024 Ko de RAM (512 Ko sont étroitement couplés) 2 audionumériques I2S 3 bus CAN (1 avec CAN FD) 1 audio numérique S/PDIF 3 SPI, tous avec FIFO de 16 mots 1 SDIO (4 bits) SD native 3 I2C, tous avec FIFO 4 octets 7 séries, toutes avec FIFO 4 octets 32 canaux DMA à usage général 31 broches PWM 40 broches numériques, toutes interruptions 14 broches analogiques, 2 ADC sur puce Générateur de nombres aléatoires Accélération cryptographique Pipeline de traitement des pixels RTC pour la date/heure Déclenchement croisé périphérique FlexIO programmable Gestion tout ou rien de l'alimentation Emplacement USB Le port USB Host du Teensy 4.1 vous permet de connecter des périphériques USB tels que des claviers et des instruments de musique MIDI. Un connecteur à 5 broches et un câble hôte USB sont nécessaires pour connecter un périphérique USB. Vous pouvez également utiliser l'un de ces câbles pour vous connecter aux broches USB. Mémoire Au bas du Teensy 4.1 se trouvent des emplacements pour souder 2 puces mémoire. La plus petite zone est destinée à une puce PSRAM SOIC-8. L'emplacement le plus grand est destiné à la mémoire flash QSPI. Consommation d'énergie &; Gestion Lorsqu'il fonctionne à 600 MHz, le Teensy 4.1 consomme environ 100 mA d'énergie et prend en charge la mise à l'échelle dynamique de l'horloge. Contrairement aux microcontrôleurs traditionnels, où la modification de la vitesse d'horloge entraîne des débits en bauds incorrects et d'autres problèmes, le matériel Teensy 4.1 et la prise en charge logicielle de Teensyduino pour les fonctions de synchronisation Arduino sont conçus pour permettre des changements de vitesse dynamiques. Les débits en bauds série, les fréquences d'échantillonnage du streaming audio et les fonctions Arduino telles que delay() et millis(), ainsi que les extensions Teensyduino telles que IntervalTimer et elapsedMillis, continuent de fonctionner correctement à mesure que la vitesse du processeur change. Teensy 4.1 offre également une fonction de mise hors tension. En connectant un bouton-poussoir à la broche On/Off, l'alimentation 3,3 V peut être complètement coupée en appuyant sur le bouton pendant cinq secondes et réactivée en appuyant brièvement sur le bouton. Lorsqu'une pile bouton est connectée au VBAT, le RTC du Teensy 4.1 continue également de maintenir la date et l'heure lorsque l'alimentation est coupée. Teensy 4.1 peut également être overclocké, bien au-dessus de 600 MHz ! L'ARM Cortex-M7 apporte de nombreuses fonctionnalités de processeur puissantes à une plate-forme de microcontrôleur précise en temps réel. Le Cortex-M7 est un processeur superscaler à double problème, ce qui signifie que le M7 peut exécuter deux instructions par cycle d'horloge, à 600 MHz ! Bien entendu, l’exécution simultanée de deux instructions dépend de l’ordre des instructions et des registres par le compilateur. Les premiers tests ont montré que le code C++ compilé par Arduino a tendance à exécuter deux instructions environ 40 à 50 % du temps lors de l'exécution d'un travail numérique intensif utilisant des entiers et des pointeurs. Le Cortex-M7 est le premier microcontrôleur ARM à utiliser la prédiction de branchement. Pour M4, les boucles et tout autre code utilisant le branchement, cela peut prendre trois cycles d'horloge. Avec M7, après qu'une boucle a été exécutée plusieurs fois, la prédiction de branchement supprime cette surcharge, permettant à l'instruction de branchement de s'exécuter en un seul cycle d'horloge. La mémoire étroitement couplée est une fonctionnalité unique qui permet au Cortex-M7 de fournir un accès rapide à la mémoire en un seul cycle à l'aide d'une paire de bus de 64 bits de large. Le bus ITCM fournit un chemin de 64 bits pour la récupération des instructions. Le bus DTCM est une paire de chemins de 32 bits, permettant au M7 d'effectuer jusqu'à deux accès mémoire distincts dans le même cycle. Ces bus extrêmement rapides diffèrent du bus principal AXI du M7, qui permet d'accéder à d'autres mémoires et périphériques. 512 de mémoire sont accessibles en tant que mémoire étroitement couplée. Teensyduino mappe automatiquement votre code d'esquisse Arduino sur ITCM et toute l'utilisation de la mémoire non malloc sur le DTCM rapide, à moins que vous n'ajoutiez de nouveaux mots-clés pour remplacer la valeur par défaut optimisée. La mémoire non utilisée sur les bus étroitement couplés est optimisée pour l'accès DMA par les périphériques. Étant donné que la majeure partie de l'accès à la mémoire du M7 s'effectue sur les deux bus étroitement couplés, les puissants périphériques basés sur DMA disposent d'un excellent accès à la mémoire non TCM pour des E/S très efficaces. Le processeur Cortex-M7 du Teensy 4.1 contient une unité à virgule flottante (FPU) qui prend en charge à la fois le « double » 64 bits et le « float » 32 bits. Avec le FPU de M4 sur Teensy 3.5 et 3.6, ainsi que les puces Atmel SAMD51, seul le matériel flottant 32 bits est accéléré. Toute utilisation de fonctions doubles, doubles comme log(), sin(), cos() signifie des mathématiques lentes implémentées par logiciel. Teensy 4.1 exécute tout cela avec du matériel FPU. Pour plus d'informations, consultez la page officielle Teensy 4.1 ici .

    Rupture de stock

    € 39,95

    Membres € 35,96

  • Carte de développement FPGA iCEBreaker

    Carte de développement FPGA iCEBreaker

    La carte FPGA iCEBreaker est une carte de développement FPGA éducative open source. L'iCEBreaker est idéal pour les cours et les ateliers enseignant l'utilisation du flux de conception FPGA open source via Yosys , nextpnr , IceStorm , Icarus Verilog , Amaranth HDL et autres. Cela signifie que le tableau est peu coûteux et dispose d’un ensemble de fonctionnalités intéressantes pour permettre la conception de cours et d’exercices d’atelier intéressants. En même temps, cela permet à l'utilisateur d'utiliser les outils propriétaires du fournisseur s'il le souhaite. Après l'atelier, les cartes peuvent être facilement utilisées comme carte de développement car la plupart des GPIO sont exposés, décomposés et configurables via des cavaliers à l'arrière de la carte. Il n'y a qu'un nombre minimal de boutons et de LED qui ne peuvent pas être déconnectés et utilisés à vos propres fins. Documentation Atelier

    € 89,95

    Membres € 80,96

Connexion

Mot de passe oublié ?

Vous n'avez pas encore de compte ?
Créer un compte