La ligne de production de prototype SMD Starter I se compose de l'imprimante de pochoir TSD240, du dispositif de placement CMS PlaceMAN et du four de refusion 3LHR10.
Imprimante de pochoir SD240 (+ Raclette métallique 155 mm)
Dimensions du pochoir : max. 175 x 255 mm
Dimensions de la carte de circuit imprimé : max. 180 x 240 mm
Dimensions : 410 x 270 x 110 mm
Poids : 6,7 kg
Comprend une raclette métallique de 155 mm
Comprend 8 aimants pour maintenir la carte de circuit imprimé, dont 6 avec vis M3
Dispositif manuel de placement CMS PlaceMAN pour composants standard incl. pompe à vide (sans alimentateurs, caméra, moniteur et distributeur)
Équipé d'un bras de placement à mouvement fluide, d'une tête de placement à fonctionnement d'une main, de rotation de l'axe Z et d'une coupure automatique du vide, avec porte-carte de circuit imprimé, unité d'aspiration et 2 aiguilles de placement avec ventouses en caoutchouc.
Capacité des alimentateurs (non inclus)
2x cassette d'alimentation pour rouleaux de 10 x 8 mm à gauche
4x cassette d'alimentation pour alimentateurs de tiges pour 5 tiges chacun
D'autres systèmes d'alimentation sont possibles dans la zone d'assemblage, par exemple le système enfichable à alimentation par bande
Dimensions
Unité de base (LxlxH) : 765 x 390 x 210 mm
Avec cassette d'alimentation pour rouleaux de 10 x 8 mm (LxlxH) : 765 x 390 x 210 mm
Avec cassette d'alimentation pour rouleaux de 10 x 8 mm et cassette d'alimentation pour alimentateur de tiges (LxlxH) : 765 x 430 x 210 mm (la hauteur peut varier en fonction de la longueur des tiges)
Avec cassette d'alimentation pour rouleaux de 10 x 8 mm incl. support pour 10 rouleaux et cassette d'alimentation pour alimentateur de tiges (LxlxH) : 765 x 430 x 210 mm (la hauteur peut varier en fonction de la longueur des tiges)
Spécifications
Poids de l'unité de base : environ 6 kg
Déplacement des axes (x, y, z) : 470 x 230 x 15 mm
Zone de travail maximale : 380 x 240 mm
Dimensions maximales de la carte de circuit imprimé : 230 x 360 mm
Alimentation électrique : 230/12 V, 800 mA
Alimentation de la pompe à vide : 230 V, 6 W
Four de refusion 3LHR10 (programmable pour la soudure sans plomb avec tiroir manuel et contrôle par tablette)
Four de refusion avec chauffage IR et convection. La convection à air chaud forcé garantit un profil de température uniforme dans la chambre. Après avoir ouvert manuellement la porte, les ventilateurs s'allument et la carte de circuit imprimé soudée est refroidie rapidement.
Four de refusion compact avec porte manuelle
Prêt pour l'industrie 4.0, communication Bluetooth + tablette
Chauffage IR + convection
Application Android pour se connecter à une tablette ou un smartphone
100 programmes utilisateur différents
Contenu de la livraison : 3LHR10, tablette avec application, couverture de protection pour la tablette, 4 porte-cartes de circuit imprimé, thermocouple externe, manuel sur la tablette
Application
Connectez le four à l'alimentation électrique et raccordez le système d'extraction en option (3LFE10S) au conduit d'évacuation d'air. Lors de la première mise en marche, le four recherchera une tablette ou un smartphone. Lorsque les deux sont connectés à l'application Android, choisissez la programmation du four. Ici, la température programmable et le temps de préchauffage, ainsi que la température et d'autres données, doivent être définis. Enregistrez-vous avec la tablette pour utiliser toutes les fonctionnalités du logiciel. Si le four est déjà programmé, l'utilisateur peut contrôler le fonctionnement avec les boutons et l'écran sur le panneau avant. Lorsque le processus de refusion est terminé, un signal sonore retentit. Un signal s'affiche également sur la tablette/smartphone. Le tiroir doit maintenant être ouvert manuellement. L'application Android affiche l'état du processus, le temps et la température, ou d'autres informations.
Spécifications
Alimentation électrique : 230 V, 50 Hz
Puissance maximale : 3100 W
Températures : 50-260°C
Dimensions : 510 x 370 x 340 mm
Poids maximal : 16 kg
Dimensions de la grille : 350 x 220 mm
Dimensions maximales de la carte de circuit imprimé : 300 x 200 mm
Hauteur maximale des composants sur la carte de circuit imprimé : 50 mm en haut, 30 mm en bas
Contenu de la livraison
Imprimante de pochoir TSD240
Dispositif de placement CMS PlaceMAN
Four de refusion 3LHR10
This is the second edition of a book aimed at engineers, scientists, and hobbyists who want to interface PCs with hardware projects using graphical user interfaces. Desktop and web-based applications are covered.
The programming language used is Python 3, which is one of the most popular languages around: speed of programming being a key feature. The book has been revised and updated with an emphasis on getting the user to produce practical designs with ease – a text editor is all that is required to produce Python programs.
Hardware interfacing is achieved using an Arduino Uno as a remote slave. A full description and source code of the communication interface is given in the book. The slave provides digital and analog input and outputs. Multiple Unos can be included in one project with all control code written in Python and running on a PC One project involves a PIC microcontroller with the code provided that can be loaded into the PIC using the Uno.
The web applications and server are all implemented in Python, allowing you to access your electronic hardware over the Internet. The Raspberry Pi computer can be used as your web server. An introductory chapter is provided to get you started with using Linux.
The book is written for use with Debian or variations including Mint or Ubuntu. All of the programs in the book are freely available, ready to use and experiment with by way of a download from Elektor.
Spécifications Capteur de caméra 324x324 pixels : utilisez l'un des cœurs de Portenta pour exécuter des algorithmes de reconnaissance d'images en utilisant l'éditeur OpenMV pour Arduino Connecteur Ethernet 100 Mbps : connectez votre Portenta H7 à l'Internet filaire 2 microphones embarqués pour la détection des sons directionnels : capturez et analysez le son en temps réel Connecteur JTAG : effectuez un débogage de bas niveau de votre carte Portenta ou des mises à jour du firmware en utilisant un programmateur externe Connecteur carte SD : stockez vos données capturées sur la carte, ou lisez les fichiers de configuration La Vision Shield a été conçue pour s'intégrer à la famille Arduino Portenta. Ces cartes sont dotées de processeurs multicœurs 32 bits ARM® Cortex™ tournant à des centaines de mégahertz, avec des mégaoctets de mémoire de programme et de RAM. Elles sont équipées de Wi-Fi et de Bluetooth. La vision par ordinateur embarquée rendue facile Arduino s'est associé à OpenMV pour vous offrir une licence gratuite de l'EDI OpenMV, un moyen facile d'accéder à la vision par ordinateur en utilisant MicroPython comme langage de programmation. Téléchargez l'éditeur sur notre site et parcourez les exemples que nous avons préparés pour vous dans l'EDI OpenMV. Des entreprises du monde entier construisent déjà des produits basés sur cette approche simple, mais puissante, pour détecter, filtrer et classer des images, des codes QR et autres. Débogage avec des outils professionnels Connectez votre Portenta H7 à un débogueur professionnel via le connecteur JTAG. Utilisez des outils comme ceux de Lauterbach ou Segger sur votre carte pour déboguer votre code étape par étape. La Vision Shield expose les broches nécessaires pour que vous puissiez brancher votre sonde JTAG. Caméra Module caméra Himax HM-01B0 Résolution 320 x 320 active pixels actifs avec support pour QVGA Capteur d’image Haute sensibilité à la technologie 3,6μ BrightSense™ Microphone 2 x MP34DT05 Longueur 66 mm Largeur 25 mm Poids 11 gr Pour plus d'informations, consultez les tutoriels fournis par Arduino ici.
La carte Portenta Cat. M1/NB IoT GNSS Shield vous permet d'améliorer les fonctionnalités de connexions de vos applications Portenta H7. Elle utilise un module sans fil Cinterion TX62 de Thales, conçu pour les applications IoT très efficaces et à faible consommation, afin d'offrir une bande passante et des performances optimisées. La Portenta Cat. M1/NB IoT GNSS Shield s'associe à la forte puissance de calcul de la Portenta H7 pour permettre le développement d'applications de localisation de biens et de surveillance à distance dans les environnements industriels, ainsi que dans l'agriculture, les services publics et les villes intelligentes. La carte offre une connectivité cellulaire aux réseaux Cat. M1 et NB-IoT, avec la possibilité d'utiliser la technologie eSIM. Suivez facilement vos objets de valeur dans toute la ville ou dans le monde entier en choisissant votre GPS, GLONASS, Galileo ou BeiDou. Caractéristiques Changez les capacités de connexion sans changer la carte. Ajoutez NB-IoT, CAT. M1 et le positionnement pour n’importe quel produit Portenta. Possibilité de créer un petit routeur multiprotocole (WiFi - BT + NB-IoT/CAT. M1). Réduisez considérablement les besoins en bande passante de communication dans les applications IoT. Module basse consommation. Compatible également avec les cartes MKR. Surveillance à distance Les entreprises industrielles et agricoles peuvent tirer parti du Portenta Cat. M1/NB IoT GNSS Shield pour surveiller à distance des détecteurs de gaz, des capteurs optiques, des systèmes d'alarme pour machines, des pièges à insectes biologiques, etc. Les fournisseurs de technologies, qui proposent des solutions pour les villes intelligentes, peuvent combiner la puissance et la fiabilité de la Portenta H7 avec la carte Portenta Cat. M1/NB IoT GNSS, afin de connecter les données et d'automatiser les actions pour une utilisation réellement optimisée des ressources et une meilleure expérience utilisateur. Surveillance des biens Ajoutez des capacités de surveillance à n'importe quel bien en combinant les performances et les fonctions d'informatique périphérique des cartes de la famille Portenta. La carte Portenta Cat. M1/NB IoT GNSS Shield est idéale pour surveiller les biens de valeur ainsi que les machines et les équipements industriels. Caractéristiques Connectivité Module sans-fil Cinterion TX62; NB-IoT - LTE CAT.M1; 3GPP Rel.14 Protocole compatible LTE Cat. M1/NB1/NB2; Bandes UMTS: 1 / 2 / 3 / 4 / 5 / 8 / 12(17) / 13 / 18 / 19 / 20 / 25 / 26 / 27 / 28 / 66 / 71 / 85; LTE Cat.M1 DL: max. 300 kbps, UL: max. 1.1 Mbps; LTE Cat.NB1 DL: max. 27 kbps, UL: max. 63 kbps; LTE Cat.NB2 DL: max. 124 kbps, UL: max. 158 kbps Service de messagerie(SMS) Mode texte point à point avec terminaison mobile (MT) et origine mobile (MO) ; mode PDU (Protocol Data Unit). Aide à la localisation Compatible GNSS (GPS/BeiDou/Galileo/GLONASS) Autres Accès intégré aux piles TCP/IP IPv4 et IPv6 ; services Internet : Serveur/client TCP, client UDP, DNS, Ping, client HTTP, client FTP, client MQTT Connexion sécurisée avec TLS/DTLS Démarrage sécurisé. Dimensions 66 x 25,4 mm Température de fonctionnement De -40° C à +85° C (de -104° F à 185°F) Téléchargements · Fiche technique · Schémas
From Simple Ciphers to Secure Systems
Understanding how to apply cryptography on modern microcontrollers is essential for building secure, reliable, and trustworthy systems. This book explains cryptography in the context of embedded hardware, from classical ciphers that illustrate core principles to modern techniques such as AES for practical high-security applications.
By combining mathematical theory with real-world microcontroller implementations, readers learn not only how cryptography works, but also how to implement it effectively on systems with limited processing power and memory. The book is intended for students starting out in cryptography, hobbyists securing personal projects, and engineers looking for a structured guide to embedded security.
The book covers these key topics in applied cryptography:
Classical ciphers on Arduino Uno and Raspberry Pi Pico, with full programs: Spartan Scytale, Hebrew Atbash, Caesar, ROT13, Alberti Disk, Vigenère, Affine, Polybius, Playfair, Beaufort, Ottoman Codebook, and One-Time Pad.
Hacking classical ciphers using microcontrollers, with examples.
Pseudo-random (PRNG) and true random number generation (TRNG) on microcontrollers.
Symmetric-key cryptography with full programs: DES and AES-128/256.
Memory and speed constraints of cryptography on microcontrollers.
Asymmetric cryptography: public/private keys, digital signatures, key distribution and derivation (KDF), RSA, and SHA-256 implementations.
A complete secure communication program using RSA and AES-256.
A glossary of commonly used cryptography terms.