Clever Tricks with ATmega328 Pro Mini Boards
With a simple Pro Mini board and a few other components, projects that 20 or 30 years ago were unthinkable (or would have cost a small fortune) are realized easily and affordably in this book: From simple LED effects to a full battery charging and testing station that will put a rechargeable through its paces, there’s something for everyone.
All the projects are based on the ATmega328 microcontroller, which offers endless measuring, switching, and control options with its 20 input and output lines. For example, with a 7-segment display and a few resistors, you can build a voltmeter or an NTC-based thermometer. The Arduino platform offers the perfect development environment for programming this range of boards.
Besides these very practical projects, the book also provides the necessary knowledge for you to create projects based on your own ideas. How to measure, and what? Which transistor is suitable for switching a certain load? When is it better to use an IC? How do you switch mains voltage? Even LilyPad-based battery-operated projects are discussed in detail, as well as many different motors, from simple DC motors to stepper motors.
Sensors are another exciting topic: For example, a simple infrared receiver that can give disused remote controls a new lease on life controlling your home, and a tiny component that can actually measure the difference in air pressure between floor and table height!
An 8-in-1 test & measurement instrument for the electronics workbench
A well-equipped electronics lab is crammed with power supplies, measuring devices, test equipment and signal generators. Wouldn‘t it be better to have one compact device for almost all tasks? Based on the Arduino, a PC interface is to be developed that’s as versatile as possible for measurement and control. It simply hangs on a USB cable and – depending on the software – forms the measuring head of a digital voltmeter or PC oscilloscope, a signal generator, an adjustable voltage source, a frequency counter, an ohmmeter, a capacitance meter, a characteristic curve recorder, and much more.
The circuits and methods collected here are not only relevant for exactly these tasks in the "MSR" electronics lab, but many details can also be used within completely different contexts.
An 8-in-1 test & measurement instrument for the electronics workbench
A well-equipped electronics lab is crammed with power supplies, measuring devices, test equipment and signal generators. Wouldn‘t it be better to have one compact device for almost all tasks? Based on the Arduino, a PC interface is to be developed that’s as versatile as possible for measurement and control. It simply hangs on a USB cable and – depending on the software – forms the measuring head of a digital voltmeter or PC oscilloscope, a signal generator, an adjustable voltage source, a frequency counter, an ohmmeter, a capacitance meter, a characteristic curve recorder, and much more.
The circuits and methods collected here are not only relevant for exactly these tasks in the "MSR" electronics lab, but many details can also be used within completely different contexts.
L'Arduino Nano est une petite carte, complète et facile à monter sur une planche à pain, basée sur l'ATmega328 (Arduino Nano 3.x). Il possède plus ou moins les mêmes fonctionnalités que l'Arduino Duemilanove, mais dans un emballage différent. Il lui manque seulement une prise d'alimentation en courant continu et elle fonctionne avec un câble USB Mini-B au lieu d'un câble standard.
Caractéristiques
Microcontrôleur
ATmega328
Tension de fonctionnement (niveau logique)
5 V
Tension d'entrée (recommandée)
7-12 V
Tension d'entrée (limites)
6-20V
Broches d'E/S numériques
14 (dont 6 avec sortie PWM)
Broches d'entrée analogique
8
Courant CC par broche E/S
40mA
Mémoire flash
16 Ko (ATmega168) ou 32 Ko (ATmega328) dont 2 Ko utilisés par le chargeur de démarrage
SRAM
1 Ko (ATmega168) ou 2 Ko (ATmega328)
EEPROM
512 octets (ATmega168) ou 1 Ko (ATmega328)
Vitesse de l'horloge
16 MHz
Dimensions
18x45mm
Source de courant
L'Arduino Nano peut être alimenté via la connexion USB Mini-B, une alimentation externe non régulée de 6 à 20 V (broche 30) ou une alimentation externe régulée de 5 V (broche 27). La source d'alimentation est automatiquement sélectionnée sur la source de tension la plus élevée.
Mémoire
L'ATmega168 dispose de 16 Ko de mémoire flash pour stocker le code (dont 2 Ko sont utilisés pour le chargeur de démarrage), 1 Ko de SRAM et 512 octets d'EEPROM.
L'ATmega328 dispose de 32 Ko de mémoire flash pour le stockage du code (dont 2 Ko sont également utilisés pour le chargeur de démarrage), 2 Ko de SRAM et 1 Ko d'EEPROM.
Entrée et sortie
Chacune des 14 broches numériques du Nano peut être utilisée comme entrée ou sortie, en utilisant les fonctions pinMode() , digitalWrite() et digitalRead() . Ils fonctionnent à 5 V.
Chaque broche peut fournir ou recevoir un maximum de 40 mA et possède une résistance de rappel interne (désactivée par défaut) de 20 à 50 kohms.
Communication
L'Arduino Nano dispose d'un certain nombre de fonctionnalités pour communiquer avec un ordinateur, un autre Arduino ou d'autres microcontrôleurs.
Les ATmega168 et ATmega328 fournissent une communication série UART TTL (5 V), disponible sur les broches numériques 0 (RX) et 1 (TX). Un FTDI FT232RL sur la carte canalise cette communication série via USB et les pilotes FTDI (inclus avec le logiciel Arduino) fournissent un port COM virtuel au logiciel de l'ordinateur.
Le logiciel Arduino comprend un moniteur série qui permet d'envoyer des données textuelles simples vers et depuis la carte Arduino. Les LED RX et TX de la carte clignoteront lorsque les données seront envoyées via la puce FTDI et la connexion USB à l'ordinateur (mais pas pour les communications série sur les broches 0 et 1).
Une bibliothèque SoftwareSerial permet la communication série sur chacune des broches numériques du Nano.
Programmation informatique
L'Arduino Nano peut être programmé avec le logiciel Arduino ( télécharger ).
L'ATmega168 ou l'ATmega328 de l'Arduino Nano est livré avec un chargeur de démarrage qui vous permet de télécharger un nouveau code sans utiliser de programmeur matériel externe. Il communique en utilisant le protocole STK500 d'origine ( référence , fichiers d'en-tête C ).
Vous pouvez également contourner le chargeur de démarrage et programmer le microcontrôleur via l'en-tête ICSP (In-Circuit Serial Programming) avec Arduino ISP ou similaire ; voir ces instructions pour plus de détails.
Réinitialisation automatique (logicielle)
Plutôt que de nécessiter une pression physique sur le bouton de réinitialisation avant un téléchargement, l'Arduino Nano est conçu de manière à permettre sa réinitialisation par un logiciel exécuté sur un ordinateur connecté.
L'une des lignes de contrôle d'alimentation matérielle (DTR) du FT232RL est connectée à la ligne de réinitialisation de l'ATmega168 ou de l'ATmega328 via un condensateur de 100 nF. Lorsque cette ligne est affirmée (prise au niveau bas), la ligne de réinitialisation descend suffisamment longtemps pour réinitialiser la puce.
Le logiciel Arduino utilise cette capacité pour vous permettre de télécharger du code en appuyant simplement sur le bouton de téléchargement dans l'environnement Arduino. Cela signifie que le chargeur de démarrage peut avoir un délai d'attente plus court, car la réduction du DTR peut être bien coordonnée avec le début du téléchargement.
This book is about DC electric motors and their use in Arduino and Raspberry Pi Zero W based projects. The book includes many tested and working projects where each project has the following sub-headings:
Title of the project
Description of the project
Block diagram
Circuit diagram
Project assembly
Complete program listing of the project
Full description of the program
The projects in the book cover the standard DC motors, stepper motors, servo motors, and mobile robots. The book is aimed at students, hobbyists, and anyone else interested in developing microcontroller based projects using the Arduino Uno or the Raspberry Pi Zero W.
One of the nice features of this book is that it gives complete projects for remote control of a mobile robot from a mobile phone, using the Arduino Uno as well as the Raspberry Pi Zero W development boards. These projects are developed using Wi-Fi as well as the Bluetooth connectivity with the mobile phone. Readers should be able to move a robot forward, reverse, turn left, or turn right by sending simple commands from a mobile phone. Full program listings of all the projects as well as the detailed program descriptions are given in the book. Users should be able to use the projects as they are presented, or modify them to suit to their own needs.
L'Arduino Nano ESP32 (avec ou sans connecteurs) est une carte au format Nano basée sur l'ESP32-S3 (intégré dans le NORA-W106-10B de u-blox). Il s'agit de la première carte Arduino entièrement basée sur un ESP32, et elle dispose du Wi-Fi, du Bluetooth LE, du débogage via USB natif dans l'IDE Arduino ainsi que de la faible consommation d'énergie.
Le Nano ESP32 est compatible avec l'Arduino IoT Cloud et prend en charge MicroPython. C'est une carte idéale pour se lancer dans le développement IoT.
Caractéristiques
Faible encombrement: Conçu en gardant à l'esprit le format Nano bien connu, cette carte au design compact est parfaite pour être intégrée dans des projets autonomes.
Wi-Fi et Bluetooth: Exploitez la puissance du microcontrôleur ESP32-S3, bien connu dans le domaine de l'IoT, avec le support complet d'Arduino pour la connectivité sans fil et Bluetooth.
Support d'Arduino et de MicroPython: Basculez facilement entre la programmation Arduino et MicroPython en quelques étapes simples.
Compatible avec l'Arduino IoT Cloud: Créez rapidement et facilement des projets IoT avec seulement quelques lignes de code. La configuration prend en charge la sécurité, vous permettant de surveiller et de contrôler votre projet de n'importe où grâce à l'application Arduino IoT Cloud.
Prise en charge HID: Simulez des périphériques d'interface utilisateur tels que des claviers ou des souris via USB, ouvrant de nouvelles possibilités d'interaction avec votre ordinateur.
Spécifications
Microcontrôleur
u-blox NORA-W106 (ESP32-S3)
Connecteur USB
USB-C
Broches
Broches LED intégrées
13
Broches LED RVB intégrées
14-16
Broches d'E/S numériques
14
Broches d'entrée analogique
8
Broches PWM
5
Interruptions externes
Toutes les broches numériques
Connectivité
Wi-Fi
u-blox NORA-W106 (ESP32-S3)
Bluetooth
u-blox NORA-W106 (ESP32-S3)
Communication
UART
2x
I²C
1x, A4 (SDA), A5 (SCL)
SPI
D11 (COPI), D12 (CIPO), D13 (SCK). Utilisez n'importe quelle broche GPIO pour Chip Select (CS)
Alimentation
Tension d'E/S
3,3 V
Tension d'entrée (nominale)
6-21 V
Courant source par broche d'E/S
40 mA
Courant de décharge par broche d'E/S
28 mA
Vitesse d'horloge
Processeur
Jusqu'à 240 MHz
Mémoire
Mémoire ROM
384 ko
Mémoire SRAM
512 ko
Mémoire Flash externe
128 Mbit (16 Mo)
Dimensions
18 x 45 mm
Téléchargements
Fiche technique
Schémas
Le kit Elektor MultiCalculator est une calculatrice multifonction basée sur Arduino qui va au-delà des calculs de base. Il offre 22 fonctions, dont la mesure de la lumière et de la température, l'analyse différentielle de la température et le décodage de la télécommande IR NEC. L'Elektor MultiCalculator est un outil pratique à utiliser dans vos projets ou à des fins pédagogiques.
Le kit comprend un module Pro Mini comme unité de calcul. Le PCB est facile à assembler à l’aide de composants traversants. Le boîtier se compose de 11 panneaux acryliques et de matériel de montage pour un assemblage facile. De plus, l'appareil est équipé d'un écran LCD alphanumérique 16x2, de 20 boutons et de capteurs de température.
L'Elektor MultiCalculator est programmable avec l'IDE Arduino via un connecteur PCB à 6 voies. La calculatrice peut être programmée avec un adaptateur de programmation et elle est alimentée via USB-C.
Modes de fonctionnement
Calculatrice
Code de résistance à 4 anneaux
Code de résistance à 5 anneaux
Conversion de décimal en hexadécimal et caractères (ASCII)
Conversion d'hexadécimaux en décimaux et caractères (ASCII)
Conversion de décimal en binaire et caractères (ASCII)
Conversion binaire en décimal et hexadécimal
Calcul de Hz, nF, réactance capacitive (XC)
Calcul de Hz, µH, réactance inductive (XL)
Calcul de la résistance de deux résistances connectées en parallèle
Calcul de la résistance de deux résistances connectées en série
Calcul d'une résistance parallèle inconnue
Mesure de la température
Mesure différentielle de température T1 et T2 et Delta(δ)
Mesure de la lumière
Chronomètre avec fonction temps au tour
Compteur d'articles
Décodage de la télécommande IR NEC
Conversion AWG (American Wire Gauge)
Lancer les dés
Personnaliser le message de démarrage
Étalonnage de la température
Spécifications
Langues des menus : Anglais, néerlandais
Dimensions : 92 x 138 x 40 mm
Durée de construction : environ 5 heures
Inclus
Composants PCB et traversants
Feuilles acryliques prédécoupées avec toutes les pièces mécaniques
Module microcontrôleur Pro Mini (ATmega328/5 V/16 MHz)
Adaptateur de programmation
Capteurs de température étanches
Câble USB-C
Téléchargements
Software
The Arduino Uno is an open-source microcontroller development system encompassing hardware, an Integrated Development Environment (IDE), and a vast number of libraries. It is supported by an enormous community of programmers, electronic engineers, enthusiasts, and academics. The libraries in particular really smooth Arduino programming and reduce programming time. What’s more, the libraries greatly facilitate testing your programs since most come fully tested and working.
The Raspberry Pi 4 can be used in many applications such as audio and video media devices. It also works in industrial controllers, robotics, games, and in many domestic and commercial applications. The Raspberry Pi 4 also offers Wi-Fi and Bluetooth capability which makes it great for remote and Internet-based control and monitoring applications.
This book is about using both the Raspberry Pi 4 and the Arduino Uno in PID-based automatic control applications. The book starts with basic theory of the control systems and feedback control. Working and tested projects are given for controlling real-life systems using PID controllers. The open-loop step time response, tuning the PID parameters, and the closed-loop time response of the developed systems are discussed together with the block diagrams, circuit diagrams, PID controller algorithms, and the full program listings for both the Raspberry Pi and the Arduino Uno.
The projects given in the book aim to teach the theory and applications of PID controllers and can be modified easily as desired for other applications. The projects given for the Raspberry Pi 4 should work with all other models of Raspberry Pi family.
The book covers the following topics:
Open-loop and closed-loop control systems
Analog and digital sensors
Transfer functions and continuous-time systems
First-order and second-order system time responses
Discrete-time digital systems
Continuous-time PID controllers
Discrete-time PID controllers
ON-OFF temperature control with Raspberry Pi and Arduino Uno
PID-based temperature control with Raspberry Pi and Arduino Uno
PID-based DC motor control with Raspberry Pi and Arduino Uno
PID-based water level control with Raspberry Pi and Arduino Uno
PID-based LED-LDR brightness control with Raspberry Pi and Arduino Uno
Cette clé USB contient une sélection de plus de 300 articles liés à Arduino publiés dans le magazine Elektor. Le contenu comprend à la fois des articles de fond et des projets sur les sujets suivants :
Développement logiciel et matériel : tutoriels sur le développement logiciel avec l’IDE Arduino, Atmel Studio, les shield, et les concepts essentiels de programmation.
Apprentissage : le Microcontroller Bootcamp propose une approche structurée pour programmer des systèmes embarqués.
Acquisition et mesure de données : projets comme un enregistreur de données 16 bits, un tachymètre pour tour, et un analyseur de réseau électrique pour capturer et analyser des signaux en temps réel.
Communication sans fil : apprenez à mettre en œuvre des réseaux sans fil, créer une interface Android, et communiquer efficacement avec des microcontrôleurs.
Robotique et automatisation : le Arduino Nano Robot Controller, des cartes de support pour l'automatisation, et l'exploration de divers shield Arduino pour enrichir les fonctionnalités.
Projets à construire soi-même : Des projets uniques tels qu’un projecteur laser, une horloge et un thermomètre Numitron, un récepteur TBF, Theremino, et des interfaces LED tactiles mettent en valeur des applications créatives.
Que vous soyez débutant ou expérimenté, cette collection est une ressource précieuse pour apprendre, expérimenter et repousser les limites de la technologie Arduino.
This book details the use of the ARM Cortex-M family of processors and the Arduino Uno in practical CAN bus based projects. Inside, it gives a detailed introduction to the architecture of the Cortex-M family whilst providing examples of popular hardware and software development kits. Using these kits helps to simplify the embedded design cycle considerably and makes it easier to develop, debug, and test a CAN bus based project. The architecture of the highly popular ARM Cortex-M processor STM32F407VGT6 is described at a high level by considering its various modules. In addition, the use of the mikroC Pro for ARM and Arduino Uno CAN bus library of functions are described in detail.
This book is written for students, for practising engineers, for hobbyists, and for everyone else who may need to learn more about the CAN bus and its applications. The book assumes that the reader has some knowledge of basic electronics. Knowledge of the C programming language will be useful in later chapters of the book, and familiarity with at least one microcontroller will be an advantage, especially if the reader intends to develop microcontroller based projects using CAN bus.
The book should be useful source of reference to anyone interested in finding an answer to one or more of the following questions:
What bus systems are available for the automotive industry?
What are the principles of the CAN bus?
What types of frames (or data packets) are available in a CAN bus system?
How can errors be detected in a CAN bus system and how reliable is a CAN bus system?
What types of CAN bus controllers are there?
What are the advantages of the ARM Cortex-M microcontrollers?
How can one create a CAN bus project using an ARM microcontroller?
How can one create a CAN bus project using an Arduino microcontroller?
How can one monitor data on the CAN bus?
Avec ce kit vous pouvez construire tous les projets décrits dans le livre « Mastering the Arduino Uno R4 ». Le kit est livré avec plusieurs LED, des capteurs, des actionneurs et d'autres composants. Ce kit vous permet de prendre un bon départ avec les aspects matériels et logiciels des projets conçus avec le système à microcontrôleur Arduino.
Inclus
1x Module lecteur RFID
1x Module d'horloge DS1302
1x Moteur pas à pas 5 V
1x Carte de commande de moteur pas à pas « 2003 »
5x LED verte
5x LED jaune
5x LED rouge
2x Interrupteur à bascule
1x Capteur de flamme
1x Module capteur LM35
1x Récepteur infrarouge
3x Résistances dépendant de la lumière (LDR)
1x Télécommande IR
1x Platine d'essai
4x Bouton poussoir (avec quatre capots)
1x Buzzer
1x Sonnerie piézoélectrique
1x Résistance ajustable (potentiomètre)
1x Registre à décalage 74HC595
1x Afficheur 7 segments
1x Afficheur 7 segments à 4 chiffres
1x Afficheur matriciel 8 x 8
1x Module I²C LCD / 1602
1x Module de température et d'humidité DHT11
1x Module relais
1x Module de son
10x Câble Dupont (20 cm)
20x Câble pour platine d'essai (15 cm)
1x Capteur d'eau
1x Joystick PS2
5x Résistance de 1 kΩ
5x Résistance de 10 kΩ
5x Résistance de 220 Ω
1x Module clavier 4 x 4
1x Servo 9g (25 cm)
1x Carte RFID
1x Module RGB
2x Bouchon de cavalier
1x Broche au pas de 0,1 pouce
1x Pile 9 V DC jack
Non inclus
Mastering the Arduino Uno R4 (livre)
Arduino Uno R3/R4 (carte)
Programming and Projects for the Minima and WiFi
Based on the low-cost 8-bit ATmega328P processor, the Arduino Uno R3 board is likely to score as the most popular Arduino family member, and this workhorse has been with us for many years. Eleven years later, the long-overdue successor, the Arduino Uno R4, was released. It is built around a 48 MHz, 32-bit Arm Cortex-M4 microcontroller and provides significantly expanded SRAM and Flash memory. Additionally, a higher-precision ADC and a new DAC are added to the design. The Uno R4 board also supports the CAN Bus with an interface.
Two versions of the board are available: Uno R4 Minima, and Uno R4 WiFi. This book is about using these new boards to develop many different and interesting projects with just a handful of parts and external modules. All projects described in the book have been fully tested on the Uno R4 Minima or the Uno R4 WiFi board, as appropriate.
The project topics include the reading, control, and driving of many components and modules in the kit as well as on the relevant Uno R4 board, including
LEDs
7-segment displays (using timer interrupts)
LCDs
Sensors
RFID Reader
4x4 Keypad
Real-time clock (RTC)
Joystick
8×8 LED matrix
Motors
DAC (Digital-to-analog converter)
LED matrix
WiFi connectivity
Serial UART
CAN bus
Infrared controller and receiver
Simulators
… all in creative and educational ways with the project operation and associated software explained in great detail.