Arduino Alvik est un robot puissant et polyvalent spécialement conçu pour l'enseignement de la programmation et de la robotique.
Propulsé par l'Arduino Nano ESP32, Arduino Alvik propose divers parcours d'apprentissage à travers différents langages de programmation, notamment MicroPython, Arduino C et le codage par blocs, permettant différentes possibilités d'explorer la robotique, l'IoT et l'IA.
Arduino Alvik simplifie le codage et les projets robotiques complexes, permettant aux utilisateurs de tous niveaux de se plonger dans le monde passionnant de la programmation et de la robotique. Il s’agit également d’un outil interdisciplinaire qui comble le fossé entre l’éducation et l’avenir de la robotique grâce aux cours gratuits alignés sur le CSTA et le NGSS. Ce robot innovant et polyvalent rend l'apprentissage et la création plus accessibles et amusants que jamais.
Caractéristiques
Alimenté par le Nano ESP32 polyvalent, Alvik rationalise la courbe d'apprentissage en robotique grâce à sa suite de programmation complète qui comprend MicroPython et le langage Arduino. Conçu pour s'adapter aux utilisateurs de tous niveaux, Alvik prévoit bientôt d'introduire le codage par blocs, améliorant ainsi l'accessibilité pour les jeunes étudiants et offrant un point d'entrée attrayant dans la conception robotique.
Les capteurs de temps de vol, de couleur RVB et de suivi de lignes d'Alvik, ainsi que son gyroscope et son accéléromètre à 6 axes, permettent aux utilisateurs de s'attaquer à une gamme de projets innovants et concrets. Du robot d'évitement d'obstacles à la voiture robot intelligente d'automatisation d'entrepôt, les possibilités sont infinies !
Alvik est équipé de connecteurs LEGO Technic, permettant aux utilisateurs de personnaliser le robot et d'étendre ses capacités. De plus, il comporte des connecteurs à vis M3 pour des conceptions 3D personnalisées ou découpées au laser.
Les connecteurs Servo, I²C Grove et I²C Qwiic permettent aux utilisateurs d'étendre le potentiel d'Alvik et de propulser les projets robotiques à un tout autre niveau. Ajoutez des moteurs pour contrôler les mouvements et des bras robotiques, ou intégrez des capteurs supplémentaires pour la collecte et l'analyse des données.
Spécifiations
Contrôleur principal Alvik
Arduino Nano ESP32 :
8 Mo de RAM
u-blox NORA-W106 (ESP32-S3)
Processeur jusqu'à 240 MHz
ROM 384 Ko + SRAM 512 Ko
FLASH externe de 16 Mo
Core Alvik intégré
STM32 Arm Cortex-M4 32 bits
Alimentation
Batterie Li-Ion 18650 rechargeable et remplaçable Nano ESP32 USB-C (incluse)
Langage de programmation
MicroPython, Arduino et amp; programmation basée sur des blocs
Connectivité
Wi-Fi, Bluetooth LE
Entrées
Capteur de distance de temps de vol (jusqu'à 350 cm)Capteur de couleur RVBGyroscope-accéléromètre à 6 axesRéseau de suiveurs de ligne 3x7x boutons tactiles
Sorties
2x LED RVBMoteurs 6 V (vitesse à vide 96 tr/min, courant à vide 70 mA)
Extensions
4x connecteurs LEGO Technic8x connecteurs à vis M3ServomoteurI²C GroveI²C Qwiic
Téléchargements
Datasheet
Documentation
La carte contient tout ce qui est nécessaire pour le fonctionnement du microcontrôleur ; il suffit de la connecter à un ordinateur avec un câble micro-USB ou de l'alimenter avec un adaptateur CA-CC ou une batterie pour commencer. Le Due est compatible avec tous les shields Arduino qui fonctionnent à 3,3 V et sont conformes au pinout Arduino 1.0.
Le Due respecte le pinout 1.0 :
TWI : broches SDA et SCL qui sont proches de la broche AREF.
IOREF: permet à un shield avec la configuration appropriée de s'adapter à la tension fournie par la carte. Cela permet la compatibilité du shield avec une carte 3.3V comme Due et les cartes basées sur l'AVR qui fonctionnent à 5V
Une broche non connectée, réservée pour une utilisation future.
Spécifications
Tension de fonctionnement
3.3 V
Tension d'entrée
7-12 V
E/S numériques
54
Broches d'entrée analogique
12
Broches de sortie analogique
2 (CNA)
Courant de sortie DC total sur toutes les lignes d'E/S
130 mA
Courant continu par broche E/S
20 mA
Courant continu pour la broche 3,3 V
800 mA
Courant continu pour la broche de 5 V
800 mA
Mémoire flash
512 KB tous disponibles pour les applications de l'utilisateur
SRAM
96 KB
Fréquence d'horloge
84 MHz
Longueur
101.52 mm
Largeur
53.3 mm
Poids
36 g
Veuillez noter : Contrairement à la plupart des cartes Arduino, la carte Arduino Due fonctionne à 3,3V. La tension maximale que les broches E/S peuvent tolérer est de 3,3V. L'application d'une tension supérieure à 3,3 V à une broche d'E/S peut endommager la carte.
Le matériel, le logiciel et la documentation Arduino - sont open-source comme toujours. Cela signifie que vous pouvez découvrir exactement comment la carte est conçue et vous pouvez vous baser sur sa conception pour créer vos propres circuits. Des centaines de milliers de cartes Arduino sont une source d'inspiraton pour les gens partout dans le monde.
Le shield Ethernet 2 pour Arduino vous permet de connecter votre carte Arduino à Internet. Il est basé sur la puce Ethernet Wiznet W5500. Le Wiznet W5500 fournit une pile de protocole (IP) TCP et d'UDP. Il supporte jusqu'à huit connexions simultanées par socket. Utilisez la bibliothèque Ethernet pour écrire des sketches qui permettent de se connecter à Internet à l'aide du Shield. L'Ethernet Shield 2 se connecte à une carte Arduino à l'aide de longs connecteurs à wrapper qui s'étendant à travers le Shield. La disposition des broches reste ainsi inchangée et permet de superposer un autre Shield.
La version la plus récente de la carte présente le brochage 1.0 sur la version 3 de la carte Arduino UNO.
L'Ethernet Shield 2 dispose d'une connexion RJ-45 standard, avec un transformateur de ligne intégré et une alimentation par Ethernet.
Il y a un slot pour carte micro-SD embarqué, qui peut être utilisé pour stocker des fichiers. Il est compatible avec l'Arduino Uno et Mega (en utilisant la bibliothèque Ethernet). Le lecteur de carte micro-SD est accessible par la bibliothèque SD. Lorsque vous utilisez cette bibliothèque, SS est sur la broche 4. La version originale du Shield contenait un emplacement pour carte SD de taille normale ; celui-ci n'est pas pris en charge.
Le Shield comprend également un contrôleur de reset, pour s'assurer que le module Ethernet W5500 est correctement réinitialisé à la mise sous tension. Les versions précédentes du Shield n'étaient pas compatibles avec le Mega et devaient être réinitialisées manuellement après la mise sous tension.
Le Bouclier d'affichage Giga est une solution d'écran tactile conçue pour déployer sans effort des interfaces graphiques dans vos projets. Exploitant le nouveau connecteur broche au milieu du Giga R1 WiFi, ce shield offre une intégration transparente et des fonctionnalités améliorées. Avec le Bouclier d'affichage Giga, vous avez accès à un ensemble de fonctionnalités, y compris un microphone numérique, un IMU à 6 axes et un connecteur Arducam. Ces capacités supplémentaires vous permettent d'utiliser pleinement les 54 autres broches disponibles, ce qui rend incroyablement pratique la création d'appareils portables ou de tableaux de bord pour contrôler votre projet. Spécifications Ecran KD040WVFID026-01-C025A Taille 3,97” Résolution 480x800 RGB Couleur 16,7M Mode tactile Cinq points et gestes Interface I²C Capteurs IMU BMI270 Microphone MP34DT06JTR Téléchargements Fiche technique Schématique
L'Arduino Giga R1 WiFi apporte la puissance du STM32H7 au même format que les populaires Mega et Due, étant la première carte Mega à inclure une connectivité Wi-Fi et Bluetooth.La carte fournit 76 entrées/sorties numériques (12 avec capacité PWM), 14 entrées analogiques et 2 sorties analogiques (DAC), toutes facilement accessibles via des connecteurs. Le microprocesseur STM32 à double cœur Cortex-M7 et Cortex-M4, ainsi que la mémoire embarquée et la prise audio permettent d'effectuer l'apprentissage automatique et le traitement du signal en périphérie.Microcontrôleur (STM32H747XI)Ce microcontrôleur 32 bits à double cœur vous permet d'avoir deux cerveaux qui se parlent (un Cœur-M7 à 480 MHz et un Cortex-M4 à 240 MHz) ; vous pouvez même faire tourner MicroPython dans l'un et Arduino dans l'autre.Communication sans fil (Murata 1DX)Que vous préfériez le Wi-Fi ou le Bluetooth, le Giga R1 WiFivous couvre. Vous pouvez même vous connecter rapidement à l'Arduino IoT Cloud et suivre votre projet à distance. Et si vous êtes préoccupé par la sécurité de la communication, l'ATECC608A garde tout sous contrôle.Ports matériels et communicationSuivant l'héritage de l'Arduino Mega et de l'Arduino Due, le Giga R1 WiFi possède 4x UARTs (ports série matériels), 3x ports I²C (1 de plus que ses prédécesseurs), 2x ports SPI (1 de plus que ses prédécesseurs), 1x FDCAN.GPIO et connecteurs supplémentairesEn gardant le même format du Mega et du Due, vous pouvez facilement adapter vos shield au Giga R1 WiFi (rappelez-vous que cette carte fonctionne à 3.3 V !). De plus, des connecteurs supplémentaires ont été ajoutés de sorte que le nombre total de broches GPIO est maintenant de 76, et deux nouveaux connecteurs ont été ajoutés : un VRTC pour que vous puissiez connecter une batterie pour garder le RTC en marche pendant que la carte est éteinte et une broche OFF pour que vous puissiez éteindre la carte.ConnecteursLa Giga R1 WiFi possède des connecteurs supplémentaires sur la carte qui faciliteront la création de votre projet sans matériel supplémentaire. Cette carte possède :Connecteur USB-A adapté à l'accueil de clés USB, d'autres dispositifs de stockage de masse et de dispositifs HID tels que le clavier ou la souris.Prise d'entrée-sortie de 3,5 mm connectée à DAC0, DAC1 et A7.USB-C pour alimenter et programmer la carte, ainsi que pour simuler un périphérique HID tel qu'une souris ou un clavier.Connecteur JTAG, 2x5 1,27 mm.Connecteur 20 broches pour caméra Arducam.Support de tension plus élevée : Comparé à ses prédécesseurs qui prennent en charge jusqu'à 12 V, le Giga R1 WiFi peut gérer une plage de 6 à 24 V.SpécificationsMicrocontrôleurSTM32H747XI MCU ARM 32 bits à double Cortex-M7+M4 (fiche technique)Module radioMurata 1DX double WiFi 802.11b/g/n 65 Mbps et Bluetooth (fiche technique)Élément sécuriséATECC608A-MAHDA-T (fiche technique)USBUSB-CPort de programmation / HID USB-AHôte (activer avec PA_15)ConnecteursConnecteurs E/S numériques76 Connecteurs d'entrée analogique12 CNA2 (DAC0/DAC1) Connecteurs PWM12 DiversVRT & connecteur OFFCommunicationUART4x I²C3x SPI2x Bus CANOui (nécessite un émetteur-récepteur externe)ConnecteursCaméraI²C + D54-D67 EcranD1N, D0N, D1P, D0P, CKN, CKP + D68-D75 Prise audioDAC0, DAC1, A7PuissanceTension de fonctionnement du circuit3,3 V Tension d'entrée (VIN)6-24 V Courant continu par connecteur E/S8 mAVitesse d'horlogeCortex-M7480 MHz Cortex-M4240 MHzMémoireSTM32H747XI2 Mo Flash, 1 Mo RAMDimensions53 x 101 mmTéléchargementsFiche techniqueSchémasBrochage
La carte Leonardo se distingue de toutes les cartes précédentes par la communication USB intégrée de l'ATmega32u4, alors on n'pas besoin d'un processeur supplémentaire. Cela permet à la carte Leonardo d' être détectée par un ordinateur comme une souris et un clavier, en plus d'un port série / COM virtuel (CDC).
Microcontrôleur
ATMega4809
Tension de fonctionnement
5 V
Tension d'entrée
7 V - 12 V
Broches d'entrée analogique
12
Broches PWM
7
Broche E/S CC
20
Courant continu par broche E/S
20 mA
Courant continu pour la broche de 3,3 V
50 mA
Mémoire flash
32 KB of which 4 KB used by the bootloader
SRAM
2.5 KB
EEPROM
1 KB
Fréquence d'horloge
16 MHz
Longueur
68.6 mm
Largeur
53.3 mm
Poids
20 g
Apprenez les bases de l'électronique en assemblant manuellement votre Arduino Uno, habituez-vous avec la soudure en montant chaque composant, puis libérez votre créativité avec le seul kit qui devient un synthétiseur !
Le kit Arduino Make-Your-Uno est vraiment le meilleur moyen d'apprendre à souder. Et lorsque vous avez terminé, l'emballage vous permet de construire un synthé et de faire votre musique.
Un kit avec tous les composants pour construire votre propre Arduino Uno et un synthétiseur audio.
Le kit Make-Your-Uno est accompagné d'un ensemble complet d'instructions dans une plateforme de contenu dédiée. Celles-ci comprennent des vidéos, une visionneuse interactive en 3D permettant de suivre les instructions détaillées, ainsi que la manière de programmer votre carte une fois qu'elle est terminée..
Ce kit contient :
Circuit imprimé Make-Your-Uno
1x Carte adapteur USB série.
7x Résistances 1k Ohm.
2x Résistances 10k Ohm.
2x Résistances 1M Ohm.
1x Diode (1N4007)
1x Crystal 16 MHz.
4x Leds jaunes.
1x Leds vertes.
1x Bouton-poussoir.
1x MOSFET.
1x Régulateur LDO (3.3 V).
1x Régulateur LDO (5 V).
3x Condensateurs céramiques (22pF).
3x Condensateurs électrolytiques (47uF).
7x Condensateurs polyesters (100nF).
1x Support pour ATMega 328p.
2x Connecteurs I/O.
1x Connecteur 6 broches.
1x Connecteur jack cylindrique.
1x Microcontrôleur ATmega 328p.
Arduino Audio Synth
1x Circuit imprimé Audio Synth.
1x Résistance 100k Ohm.
1x Résistance 10 Ohm.
1x Amplificateur audio (LM386).
1x Condensateur céramique (47nF).
1x Condensateur électrolytique (47uF).
1x Condensateur électrolytique (220uF).
1x Condensateur polyester (100nF).
4x Connecteurs à broches.
6x Potentiomètres 10k Ohm avec boutons en plastique.
Pièces de rechange
2x Condensateurs électrolytiques (47uF).
2x Condensateurs polyesters (100nF).
2x Condensateurs céramiques (22pF).
1x Bouton-poussoir.
1x Led jaune.
1x Led verte.
Pièces mécaniques
5x Entretoises 12 mm.
11x Entretoises 6 mm.
5x Écrous à visser.
2x Vis 12 mm.
la carte contient tout ce qui est nécessaire pour alimenter le microcontrôleur ; il suffit de le connecter à un ordinateur avec un câble USB ou de l'alimenter avec Adaptateur CA-CC ou une batterie pour commencer. La carte Mega 2560 est compatible avec la plupart des shields conçus pour l'Uno et les anciennes cartes Duemilanove ou Diecimila
Tension de fonctionnement
5 V
Tension d'entrée
7 V - 12 V
E/S numériques
54
Broches d'entrée analogique
16
Courant continu par broche E/S
20 mA
Courant continu pour la broche de 3,3 V
50 mA
Mémoire flash
256 KB dont 8 KB utilisés par le bootloader
SRAM
8 KB
EEPROM
4 KB
Fréquence d'horloge
16MHz
LED_Builtin
13
Longueur
101.52 mm
Largeur
53.3 mm
Poid
37 g
Pour plus d'informations, consultez le Guide de démarrage de Arduino.
Arduino Micro contient tout ce qui est nécessaire pour le fonctionnement du microcontrôleur ; il suffit de le connecter à un ordinateur avec un câble micro USB pour commencer. Il a un facteur de forme lui permettant d'être facilement placé sur une plaque à essai.
La carte Micro est similaire à l'Arduino Leonardo. L'ATmega32U4 dispose d'une communication USB intégrée, éliminant le besoin d'un processeur secondaire. Cela permet à la carte Micro d'apparaître à un ordinateur connecté comme une souris et un clavier, en plus d'un port série virtuel (CDC)/ port COM.
Microcontrôleur
ATmega32U4
Tension de fonctionnement
5 V
Tension d'entrée
7 V - 12 V
Broches d'entrées analogiques
12
Broches PWM
7
Broche E/S CC
20
Courant continu par broche E/S
20 mA
Courant continu pour la broche de 3,3 V
50 mA
Memoire Flash
32 KB of which 4 KB utilisé par le bootloader
SRAM
2.5 KB
EEPROM
1 KB
Fréquence d'horloge
16 MHz
LED_Builtin
13
Longeur
45 mm
Largeur
18 mm
Poids
13 g
La meilleure façon de commencer à explorer le monde des appareils connectés en utilisant l'Arduino MKR WiFi 1010. Le pack MKR IoT contient tout ce dont vous avez besoin pour construire vos premiers appareils connectés. Suivez les 5 tutoriels pas à pas que nous avons préparés pour vous et en combinant les composants électroniques inclus dans le pack, vous apprendrez rapidement à construire des appareils qui se connectent au nuage Arduino IoT. Tout ce dont vous avez besoin pour démarrer avec l'IoT Cette offre contient tout le matériel et les logiciels nécessaires pour construire vos premiers appareils IoT sans frais supplémentaires. Construire 5 projets IoT Tous les composants nécessaires pour commencer à construire vos propres projets IoT. En savoir plus sur le cloud Arduino IoT Apprenez non seulement l'électronique, mais aussi les possibilités offertes par le cloud Arduino IoT. Inclus 1x Arduino MKR1000 WiFi (avec connecteurs montés) 6x Phototransistors 1x Capteur d'inclinaison 1x Capteur de température (TMP36) 3x Potentiomètre 1x Capsule Piezo 10x Boutons poussoirs 1x Moteur DC 1x Petit servomoteur 1x LCD alphanumérique (16x2 caractères) 1x Optocoupleurs (4N35) 1x Pilote de moteur à pont en H (L293D) 2x Transistors MOSFET (IRF520) 5x Condensateurs 100uF70x Fils de connexion à âme pleine 1x Câble micro USB 1x Plaque de prototypage 1x LED (blanc brillant) 3x LED (bleu) 1x LED (RGB) 8x LED 5 mm (rouge) 8x LED 5 mm (vert) 8x LED 5 mm (jaune) 1x Bande de connecteurs mâles (4x1) 1x Câbles de liaison (rouge) 1x Câbles de liaison (noirs) 5x Diode 20x Résistances 220 Ω 5x résistances 560 Ω 5x Résistances de 1 kΩ 5x Résistances 4,7 kΩ 20x Résistances 10 kΩ 5x Résistances 1 MΩ 5x résistances 10 MΩ
Acquisition de données : Cartographiez l'environnement autour du porteur à l'aide des capteurs intégrés de température, d'humidité et de pression et collectez des données sur les mouvements à l'aide de l'IMU 6 axes et les capteurs de lumière, de gestes et de proximité. Ajoutez facilement d'autres capteurs externes pour capturer plus de données provenant de plus de sources via les connecteurs Grove integrés (x3)
Stockage de données : Collectez et stockez toutes les données localement sur une carte SD, ou connectez-vous au Cloud Arduino IoT pour la capture, le stockage et la visualisation des données en temps réel.
Visualisation de données : Visualisez localement les sorties des capteurs en temps réel sur l'écran couleur OLED intégré et créez des invites visuelles ou sonores à l'aide des LED et du buzzer intégrés.
Contrôle total: Commandez directement les appareils électroniques à faible tension à l'aide des relais intégrés et des cinq boutons tactiles, l'écran intégré offrant une interface pratique sur l'appareil pour un contrôle immédiat.
La carte Arduino MKR NB 1500 vous permet de construire votre prochain projet intelligent.Vous avez toujours voulu une maison automatisée? Ou d'un jardin intelligent? Eh bien, maintenant c'est facile avec les cartes compatibles Arduino IoT Cloud. Cela signifie : vous pouvez connecter des appareils, visualiser des données, contrôler et partager vos projets de n'importe où dans le monde. Que vous soyez un débutant ou un professionnel, nous proposons une large gamme de forfaits pour vous permettre de bénéficier des fonctionnalités dont vous avez besoin.Ajoutez la communication à bande étroite à votre projet avec le MKR NB 1500. C'est le choix idéal pour les dispositifs situés dans des endroits éloignés sans connexion Internet, ou dans des situations où l'alimentation électrique n'est pas disponible, comme les déploiements sur le terrain, les systèmes de mesure à distance, les dispositifs alimentés par l'énergie solaire ou d'autres scénarios extrêmes.Le processeur principal de la carte est un SAMD21 32 bits ARM Cortex-M0 à faible consommation, comme dans les autres cartes de la famille Arduino MKR. La connectivité à bande étroite est assurée par un module de u-blox, le SARA-R410M-02B, un chipset à faible consommation fonctionnant sur les deux bandes différentes de la gamme cellulaire IoT LTE. En plus de cela, la communication sécurisée est assurée par la puce cryptographique Microchip ECC508. En outre, le circuit imprimé comprend un chargeur de batterie, ainsi qu'un connecteur pour une antenne externe.Cette carte est conçue pour une utilisation mondiale, offrant une connectivité sur les bandes 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28 du réseau cellulaire LTE Cat M1/NB1. Les opérateurs proposant des services dans cette partie du spectre sont les suivants : Vodafone, AT&T, T-Mobile USA, Telstra et Verizon, entre autres.SpecificationsLa carte Arduino MKR NB 1500 est basée sur le microcontrôleur SAMD21.MicrocontrôleurARM MCU basse consommation SAMD21 Cortex-M0+ 32-bit (Fiche technique)Module radiou-blox SARA-R410M-02B (Fiche technique, Résumé)Elément de sécuritéATECC508 (Fiche technique)Alimentation de la carte (USB/VIN)5 VBatteries supportéesLi-Po cellule unique, 3.7 V, 1500 mAh MinimumTension de fonctionnement du circuit3,3 VBroches E/S digitales8Broches PWM13 (0 .. 8, 10, 12, 18 / A3, 19 / A4)UART1SPI1I²C1Broches entrées analogiques7 (ADC 8/10/12 bit)Broches sorties analogiques1 (DAC 10 bit)Interruptions externes8 (0, 1, 4, 5, 6, 7, 8, 16 / A1, 17 / A2)Courant continu maximal par broche E/S7 mAMémoire Flash256 KB (interne)SRAM32 KBEEPROMNoFréquence d'horloge32,768 kHz (RTC), 48 MHzLed intégrée6USBUSB haut-débit et hôte intégré/td>Gain d'antenne2 dBFréquence porteuseLTE bands 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28Classe de puissance (radio)LTE Cat M1 / NB1: Class 3 (23 dBm)Débit de données (LTE M1 half-duplex)UL 375 kbps / DL 300 kbpsDébit de données (LTE NB1 full-duplex)UL 62,5 kbps / DL 27,2 kbpsZones couvertesMultizonesLocalisationGNSS via modemConsommation (LTE M1)min 100 mA / max 190 mAConsommation (LTE NB1)min 60 mA / max 140 mACarte SIMMicroSIM (non inclue avec la carte)Dimensions67,6 x 25 mmPoids32 gTéléchargementsFichiers EagleSchémasBrochage
Vous avez toujours voulu une maison automatisée ? Ou d'un jardin intelligent ? Eh bien, maintenant c'est facile avec les cartes compatibles Arduino IoT Cloud. Cela signifie : vous pouvez connecter des appareils, visualiser des données, contrôler et partager vos projets de n'importe où dans le monde. Que vous soyez un débutant ou un professionnel, nous proposons une large gamme de forfaits pour vous permettre de bénéficier des fonctionnalités dont vous avez besoin.Connectez vos capteurs et actionneurs sur de longues distances en exploitant la puissance du protocole sans fil LoRa ou à travers les réseaux LoRaWAN.La carte Arduino MKR WAN 1310 offre une solution pratique et rentable pour ajouter la connectivité LoRa aux projets nécessitant une faible consommation. Cette carte open source peut être connectée au Arduino IoT Cloud.Meilleur et plus performantLe MKR WAN 1310 apporte une série d'améliorations par rapport à son prédécesseur, le MKR WAN 1300. Bien qu'il soit toujours basé sur le processeur basse consommation SAMD21 de Microchip, le module LoRa CMWX1ZZABZ de Murata et la puce cryptographique caractéristique de la famille MKR (ECC508), le MKR WAN 1310 comprend un nouveau chargeur de batterie, une Flash SPI de 2 Mo et un meilleur contrôle de la consommation électrique de la carte.Amélioration de l'autonomie des pilesLes dernières modifications ont considérablement amélioré l'autonomie de la batterie du MKR WAN 1310. Lorsqu'il est correctement configuré, la consommation d'énergie ne dépasse pas les 104 µA! Il est également possible d'utiliser le port USB pour alimenter la carte en énergie (5 V) ; faites fonctionner la carte avec ou sans piles, le choix vous appartient.Stockage embarquéL'enregistrement des données et d'autres fonctions OTA (Over The Air) sont désormais possibles grâce à l'inclusion d'une mémoire Flash de 2 Mo sur la carte. Cette nouvelle fonction passionnante vous permettra de transférer des fichiers de configuration de l'infrastructure vers la carte, de créer vos propres commandes de script, ou simplement de stocker des données localement pour les envoyer dès que la connectivité est optimale. La puce cryptographique du MKR WAN 1310 renforce la sécurité en stockant les informations d'identification et les certificats dans l'élément sécurisé intégré.Ces caractéristiques en font le nœud IoT et le bloc de construction parfaits pour les dispositifs IoT étendus de faible puissance.SpecificationsLe Arduino MKR WAN 1310 est basé sur le microcontrôleur SAMD21.MicrocontrôleurSAMD21 Cortex-M0+ ARM MCU 32-bit basse consommation (fiche technique)Module radioCMWX1ZZABZ (fiche technique)Alimentation de la carte (USB/VIN)5 VÉlément de sécuritéATECC508 (fiche technique)Batteries supportéesPile rechargeable Li-Ion, ou Li-Po, 1024 mAh capacité minimumTension nominale du circuit3,3 VBroches E/S digitales8Broches PWM13 (0 .. 8, 10, 12, 18 / A3, 19 / A4)UART1SPI1I²C1Broches entrées analogiques7 (ADC 8/10/12 bit)Broches sorties analogiques1 (DAC 10 bit)Interruptions externes8 (0, 1, 4, 5, 6, 7, 8, 16 / A1, 17 / A2)Courant continu max par broche E/S7 mAMémoire flash CPU256 KB (internal)Mémoire flash QSPI2 MByte (external)SRAM32 KBEEPROMNoFréquence d'horloge32,768 kHz (RTC), 48 MHzLeds intégrées6USBFull-Speed USB Device and embedded HostGain d'antenne2 dB (bundled pentaband antenna)Fréquence porteuse433/868/915 MHzDimensions67,64 x 25 mmPoids32 gDownloadsFichiers EagleSchémasFritzingBrochage
Le processeur principal de la carte est un SAMD21 Arm® Cortex®-M0 32-bit à faible consommation, comme dans les autres cartes de la famille Arduino MKR. La connectivité WiFi et Bluetooth® est assurée par un module de u-blox, NINA-W10, un chipset à faible consommation fonctionnant dans la bande 2,4 GHz. En outre, la communication sécurisée est assurée par la crypto chip ECC508 de Microchip® . En plus, vous trouverez un chargeur de batterie et une LED RGB.
Bibliothèque officielle WiFi de Arduino
Vous pouvez connecter votre carte se à n'importe quel type de réseau WiFi existant, ou l'utiliser pour créer votre propre point d'accès Arduino. L'ensemble d'exemples spécifiques que nous fournissons pour le MKR WiFi 1010 peut être consulté à WiFiNINA library reference page.
Compatible avec d'autres services Cloud
Il est également possible de connecter votre carte à différents services Cloud, dont celui d'Arduino. Voici quelques exemples de la façon dont le MKR WiFi 1010 peut se connecter à:
Blynk: a un simple projet de la communauté Arduino se connecter à Blynk pour faire fonctionner votre carte depuis un téléphone avec peu de code.
IFTTT: in-depth case of building a smart plug connected to IFTTT
AWS IoT Core: Arduino made cet exemple sur comment se connecter à Amazon Web Services
Azure: visit ce dépôt GitHub expliquant comment connecter un capteur de température au Cloud d'Azure
Firebase: vous voulez vous connecter à Firebase de Google, cette bibliothèque Arduino vous expliquera comment
Microcontrôleur
SAMD21 Cortex®-M0+ 32bit ARM MCU à faible consommation
Module Radio
u-blox NINA-W102
Alimentation
5 V
Élément sécurisé
ATECC508
Batterie supportée
Li-Po Single Cell, 3.7 V, 1024 mAh Minimum
Tension de fonctionnement
3.3 V
Broches E/S numériques
8
Broches PWM
13
UART
1
SPI
1
I2C
1
Broches d'entrée analogique
7
Broches de sortie analogique
1
Interruptions externes
10
Memoire Flash
256 KB
SRAM
32 KB
EEPROM
no
Fréquence d'horloge
32.768 kHz, 48 MHz
LED_Builtin
6
USB
Dispositif USB à pleine vitesse et hôte intégré
Longeur
61.5 mm
Largeur
25 mm
Poids
32 g
L'Arduino MKR Zero est une carte de développement pour les créateurs de musique! Avec un support de carte SD et des interfaces SPI dédiées (SPI1), vous pouvez lire des fichiers musicaux sans matériel supplémentaire. La MKR Zero vous apporte la puissance d'un Zero dans le format plus petit établi par le facteur de forme MKR. La carte MKR Zero est un excellent outil pédagogique pour apprendre le développement d'applications 32 bits. Elle dispose d'un connecteur SD embarqué avec des interfaces SPI dédiées (SPI1) qui vous permettent de jouer avec des fichiers de musique sans matériel supplémentaire! La carte est alimentée par le MCU SAMD21 d'Atmel, qui comporte un cœur ARM Cortex M0+ 32 bits. La carte contient tout ce qui est nécessaire pour supporter le microcontrôleur; il suffit de la connecter à un ordinateur avec un câble micro-USB ou de l'alimenter par une batterie LiPo. La tension de la batterie peut également être surveillée, grâce à une connexion entre la batterie et le convertisseur analogique de la carte. Caractéristiques Microcontrôleur SAMD21 ARM Cortex-M0+ 32-bit basse consommation Alimentation (USB/VIN) 5 V Batteries supportées Cellule unique Li-Po ll, 3.7 V, 700 mAh minimum Courant continu par broche 3,3 V 600 mA Courant continu par broche 5 V 600 mA Tension de fonctionnement 3,3 V Broches E/S digitales 22 Broches PWM 12 (0, 1, 2, 3, 4, 5, 6, 7, 8, 10, A3 - or 18 -, A4 -or 19) UART 1 SPI 1 I²C 1 Broches entrées analogiques 7 (ADC 8/10/12 bit) Broches sorties analogiques 1 (DAC 10 bit) Interruptions externes 10 (0, 1, 4, 5, 6, 7, 8, A1 -or 16-, A2 - or 17) Courant continu par broche E/S 7 mA Mémoire flash 256 KB Mémoire flash pour le chargeur de démarrage 8 KB SRAM 32 KB EEPROM Non Fréquence d’horloge 32.768 kHz (RTC), 48 MHz Led intégrée 32 Downloads Fiche technique Fichiers Eagle Schémas Fritzing Brochage
L'Arduino Nano est une petite carte, complète et facile à monter sur une planche à pain, basée sur l'ATmega328 (Arduino Nano 3.x). Il possède plus ou moins les mêmes fonctionnalités que l'Arduino Duemilanove, mais dans un emballage différent. Il lui manque seulement une prise d'alimentation en courant continu et elle fonctionne avec un câble USB Mini-B au lieu d'un câble standard.
Caractéristiques
Microcontrôleur
ATmega328
Tension de fonctionnement (niveau logique)
5 V
Tension d'entrée (recommandée)
7-12 V
Tension d'entrée (limites)
6-20V
Broches d'E/S numériques
14 (dont 6 avec sortie PWM)
Broches d'entrée analogique
8
Courant CC par broche E/S
40mA
Mémoire flash
16 Ko (ATmega168) ou 32 Ko (ATmega328) dont 2 Ko utilisés par le chargeur de démarrage
SRAM
1 Ko (ATmega168) ou 2 Ko (ATmega328)
EEPROM
512 octets (ATmega168) ou 1 Ko (ATmega328)
Vitesse de l'horloge
16 MHz
Dimensions
18x45mm
Source de courant
L'Arduino Nano peut être alimenté via la connexion USB Mini-B, une alimentation externe non régulée de 6 à 20 V (broche 30) ou une alimentation externe régulée de 5 V (broche 27). La source d'alimentation est automatiquement sélectionnée sur la source de tension la plus élevée.
Mémoire
L'ATmega168 dispose de 16 Ko de mémoire flash pour stocker le code (dont 2 Ko sont utilisés pour le chargeur de démarrage), 1 Ko de SRAM et 512 octets d'EEPROM.
L'ATmega328 dispose de 32 Ko de mémoire flash pour le stockage du code (dont 2 Ko sont également utilisés pour le chargeur de démarrage), 2 Ko de SRAM et 1 Ko d'EEPROM.
Entrée et sortie
Chacune des 14 broches numériques du Nano peut être utilisée comme entrée ou sortie, en utilisant les fonctions pinMode() , digitalWrite() et digitalRead() . Ils fonctionnent à 5 V.
Chaque broche peut fournir ou recevoir un maximum de 40 mA et possède une résistance de rappel interne (désactivée par défaut) de 20 à 50 kohms.
Communication
L'Arduino Nano dispose d'un certain nombre de fonctionnalités pour communiquer avec un ordinateur, un autre Arduino ou d'autres microcontrôleurs.
Les ATmega168 et ATmega328 fournissent une communication série UART TTL (5 V), disponible sur les broches numériques 0 (RX) et 1 (TX). Un FTDI FT232RL sur la carte canalise cette communication série via USB et les pilotes FTDI (inclus avec le logiciel Arduino) fournissent un port COM virtuel au logiciel de l'ordinateur.
Le logiciel Arduino comprend un moniteur série qui permet d'envoyer des données textuelles simples vers et depuis la carte Arduino. Les LED RX et TX de la carte clignoteront lorsque les données seront envoyées via la puce FTDI et la connexion USB à l'ordinateur (mais pas pour les communications série sur les broches 0 et 1).
Une bibliothèque SoftwareSerial permet la communication série sur chacune des broches numériques du Nano.
Programmation informatique
L'Arduino Nano peut être programmé avec le logiciel Arduino ( télécharger ).
L'ATmega168 ou l'ATmega328 de l'Arduino Nano est livré avec un chargeur de démarrage qui vous permet de télécharger un nouveau code sans utiliser de programmeur matériel externe. Il communique en utilisant le protocole STK500 d'origine ( référence , fichiers d'en-tête C ).
Vous pouvez également contourner le chargeur de démarrage et programmer le microcontrôleur via l'en-tête ICSP (In-Circuit Serial Programming) avec Arduino ISP ou similaire ; voir ces instructions pour plus de détails.
Réinitialisation automatique (logicielle)
Plutôt que de nécessiter une pression physique sur le bouton de réinitialisation avant un téléchargement, l'Arduino Nano est conçu de manière à permettre sa réinitialisation par un logiciel exécuté sur un ordinateur connecté.
L'une des lignes de contrôle d'alimentation matérielle (DTR) du FT232RL est connectée à la ligne de réinitialisation de l'ATmega168 ou de l'ATmega328 via un condensateur de 100 nF. Lorsque cette ligne est affirmée (prise au niveau bas), la ligne de réinitialisation descend suffisamment longtemps pour réinitialiser la puce.
Le logiciel Arduino utilise cette capacité pour vous permettre de télécharger du code en appuyant simplement sur le bouton de téléchargement dans l'environnement Arduino. Cela signifie que le chargeur de démarrage peut avoir un délai d'attente plus court, car la réduction du DTR peut être bien coordonnée avec le début du téléchargement.
L'Arduino Nano 33 BLE Rev2 est à la pointe de l'innovation, exploitant les capacités avancées du microcontrôleur nRF52840. Ce processeur Arm Cortex-M4 32 bits, fonctionnant à une fréquence impressionnante de 64 MHz, permet aux développeurs de réaliser un large éventail de projets. La compatibilité supplémentaire avec MicroPython améliore la flexibilité de la carte, la rendant accessible à une communauté plus large de développeurs.
La caractéristique remarquable de cette carte de développement est sa capacité Bluetooth Low Energy (Bluetooth LE), permettant une communication sans effort avec d'autres appareils compatibles Bluetooth LE. Cela ouvre un champ de possibilités aux créateurs, leur permettant de partager des données de manière transparente et d'intégrer leurs projets à un large éventail de technologies connectées.
Conçu dans un souci de polyvalence, le Nano 33 BLE Rev2 est équipé d'une unité de mesure inertielle (IMU) à 9 axes intégrée. Cette IMU change la donne, offrant des mesures précises de la position, de la direction et de l’accélération. Que vous développiez des appareils portables ou des appareils nécessitant un suivi de mouvement en temps réel, l'IMU intégrée garantit une précision et une fiabilité inégalées.
Essentiellement, le Nano 33 BLE Rev2 atteint l'équilibre parfait entre taille et fonctionnalités, ce qui en fait le choix ultime pour créer des appareils portables connectés de manière transparente à votre smartphone. Que vous soyez un développeur chevronné ou un amateur se lançant dans une nouvelle aventure dans les technologies connectées, cette carte de développement ouvre un monde de possibilités d'innovation et de créativité. Élevez vos projets grâce à la puissance et à la flexibilité du Nano 33 BLE Rev2.
Spécifications
Microcontrôleur
nRF52840
Connecteur USB
Micro-USB
Épingles
Broches LED intégrées
13
Broches d'E/S numériques
14
Broches d'entrée analogique
8
Broches PWM
Toutes les broches numériques (4 à la fois)
Interruptions externes
Toutes les broches numériques
Connectivité
Bluetooth
u-blox NINA-B306
Capteurs
IMU
BMI270 (accéléromètre 3 axes + gyroscope 3 axes) + BMM150 (magnétomètre 3 axes)
Communication
UART
RX/TX
I²C
A4 (SDA), A5 (SCL)
SPI
D11 (COPI), D12 (OPIC), D13 (SCK). Utilisez n'importe quel GPIO pour Chip Select (CS)
Puissance
Tension I/O
3,3 V
Tension d'entrée (nominale)
5-18 V
Courant CC par broche d'I/O
10 mA
Vitesse de l'horloge
Processeur
nRF52840 64 MHz
Mémoire
nRF52840
256 Ko de SRAM, 1 Mo de mémoire flash
Dimensions
18 x 45 mm
Téléchargements
Datasheet
Schematics
L'Arduino Nano 33 BLE Sense Rev2 avec connecteurs est la carte Arduino 3.3 V prête pour l’IA dans le plus petit facteur de forme disponible avec un ensemble de capteurs qui vous permettra sans aucun matériel externe de commencer à réaliser votre prochain projet, tout de suite. Avec l'Arduino Nano 33 BLE Sense Rev2, vous pouvez : Construire des dispositifs portables qui, grâce à l'IA, peuvent reconnaître les mouvements. Construire un dispositif de surveillance de la température ambiante qui peut suggérer ou modifier des changements dans le thermostat. Construire un dispositif de reconnaissance des gestes ou de la voix en utilisant le microphone ou le capteur de gestes avec les capacités d'IA de la carte. Différences entre Rev1 et Rev2 Remplacement de l'IMU LSM9DS1 (9 axes) par une combinaison de deux IMU (BMI270 - IMU 6 axes et BMM150 - IMU 3 axes). Remplacement du capteur de température et d'humidité HTS221 par le HS3003. Remplacement du microphone MP34DT05 par MP34DT06JTR Remplacement de l'alimentation MPM3610 par MP2322 Ajout d'un cavalier de soudure VUSB sur la partie supérieure de la carte. Nouveau point de test pour USB, SWDIO et SWCLK Caractéristiques Microcontrôlleur nRF52840 (Fiche technique) Tension de fonctionnement 3,3 V Tension d’entrée (limite) 21 V Courrant continu par connecteurs I/O 15 mA Vitesse d’horloge 64 MHz CPU Mémoire Flash 1 MB (nRF52840) SRAM 256 KB (nRF52840) EEPROM None Ports d'entrée/sortie numériques 14 PWM Tous les ports numériques UART 1 SPI 1 I²C 1 Ports d'entrée analogique 8 (ADC 12 bits 200 k échantillons) Ports de sortie analogique Uniquement par PWM (pas de CNA) Interruptions externes Tous les ports numériques LED_BUILTIN 13 USB Natif dans le processeur nRF52840 IMU BMI270 (fiche technique) and BMM150 (fiche technique) Microphone MP34DT06JTR (fiche technique) Geste, lumière, proximité, couleur APDS9960 (fiche technique) Pression barométrique LPS22HB (fiche technique) Température, humidité HS3003 (fiche technique) Downloads fiche technique Schéma
Le processeur principal de la carte est un Arm® Cortex®-M0 32 bits SAMD21 à faible consommation. La connectivité wifi et Bluetooth® est assurée par un module de u-blox, le NINA-W10, un chipset basse consommation fonctionnant dans la gamme 2,4GHz. En outre, la communication sécurisée est assurée par la puce cryptographique ECC608 de Microchip®. En plus de cela, vous trouverez un IMU 6 axes, ce qui rend cette carte parfaite pour les systèmes simples d'alarme vibratoire, les podomètres, le positionnement relatif des robots, etc.
Wifi et Arduino IoT Cloud
Vous pouvez connecter votre carte à tout type de réseau wifi disponible, ou l'utiliser pour créer votre propre point d'accès Arduino. L'ensemble de nos exemples spécifiques pour la Nano 33 IoT peut être consulté à l'adresse suivante Page de référence de la bibliothèque WiFiNINA.
Il est également possible de connecter votre carte à différents services de Cloud, celui d'Arduino entre autres. Voici quelques exemples de la façon dont les cartes Arduino peuvent se connecter à
Le cloud ITO d'Arduino : Le cloud IoT d'Arduino est un moyen simple et rapide d'assurer une communication sécurisée pour tous vos objets connectés. Découvrez-leici.
Blynk : a projet simplet de notre communauté se connectant à Blynk pour commander votre carte depuis votre téléphone avec peu de code.
IFTTT :découvrez un exemple approfondi de de réalisation d'une prise intelligente connectée à IFTTT.
AWS IoT Core : nous avons fait cet exemple sur la façon de se connecter à Amazon Web Services.
Azure : visitez ce référentiel GitHub expliquant comment connecter un capteur de température au cloud d'Azure.
Firebase : vous voulez vous connecter à Firebase de Google, cette bibliothèque Arduino vous guidera à le faire.
Microcontrôleur
SAMD21 Cortex®-M0+ 32bit microcontrôleur ARM à faible consommation
Module radio
u-blox NINA-W102
Élément de sécurité
ATECC608A
Tension de fonctionnement
3,3 V
Tension d'entrée
21 V
Broches d'E/S numériques
14
Broches PWM
11
DC Current per I/O Pin
7 mA
Broches d'entrée analogique
8
1
Interruptions externes
Toutes les broches numériques
UART
1
SPI
1
I2C
1
Mémoire flash
256 Ko
SRAM
32 Ko
EEPROM
aucune
Frequence d'horloge
48 MHz
LED_Builtin
13
USB
Natif dans le processeur SAMD21
IMU
LSM6DS3
Longueur
45 mm
Largeur
18 mm
Poids
5 g
L'Arduino Nano ESP32 (avec ou sans connecteurs) est une carte au format Nano basée sur l'ESP32-S3 (intégré dans le NORA-W106-10B de u-blox). Il s'agit de la première carte Arduino entièrement basée sur un ESP32, et elle dispose du Wi-Fi, du Bluetooth LE, du débogage via USB natif dans l'IDE Arduino ainsi que de la faible consommation d'énergie.
Le Nano ESP32 est compatible avec l'Arduino IoT Cloud et prend en charge MicroPython. C'est une carte idéale pour se lancer dans le développement IoT.
Caractéristiques
Faible encombrement: Conçu en gardant à l'esprit le format Nano bien connu, cette carte au design compact est parfaite pour être intégrée dans des projets autonomes.
Wi-Fi et Bluetooth: Exploitez la puissance du microcontrôleur ESP32-S3, bien connu dans le domaine de l'IoT, avec le support complet d'Arduino pour la connectivité sans fil et Bluetooth.
Support d'Arduino et de MicroPython: Basculez facilement entre la programmation Arduino et MicroPython en quelques étapes simples.
Compatible avec l'Arduino IoT Cloud: Créez rapidement et facilement des projets IoT avec seulement quelques lignes de code. La configuration prend en charge la sécurité, vous permettant de surveiller et de contrôler votre projet de n'importe où grâce à l'application Arduino IoT Cloud.
Prise en charge HID: Simulez des périphériques d'interface utilisateur tels que des claviers ou des souris via USB, ouvrant de nouvelles possibilités d'interaction avec votre ordinateur.
Spécifications
Microcontrôleur
u-blox NORA-W106 (ESP32-S3)
Connecteur USB
USB-C
Broches
Broches LED intégrées
13
Broches LED RVB intégrées
14-16
Broches d'E/S numériques
14
Broches d'entrée analogique
8
Broches PWM
5
Interruptions externes
Toutes les broches numériques
Connectivité
Wi-Fi
u-blox NORA-W106 (ESP32-S3)
Bluetooth
u-blox NORA-W106 (ESP32-S3)
Communication
UART
2x
I²C
1x, A4 (SDA), A5 (SCL)
SPI
D11 (COPI), D12 (CIPO), D13 (SCK). Utilisez n'importe quelle broche GPIO pour Chip Select (CS)
Alimentation
Tension d'E/S
3,3 V
Tension d'entrée (nominale)
6-21 V
Courant source par broche d'E/S
40 mA
Courant de décharge par broche d'E/S
28 mA
Vitesse d'horloge
Processeur
Jusqu'à 240 MHz
Mémoire
Mémoire ROM
384 ko
Mémoire SRAM
512 ko
Mémoire Flash externe
128 Mbit (16 Mo)
Dimensions
18 x 45 mm
Téléchargements
Fiche technique
Schémas
L'Arduino Nano ESP32 est une carte au format Nano basée sur l'ESP32-S3 (intégré dans le NORA-W106-10B de u-blox). Il s'agit de la première carte Arduino entièrement basée sur un ESP32, et elle dispose du Wi-Fi, du Bluetooth LE, du débogage via USB natif dans l'IDE Arduino ainsi que de la faible consommation d'énergie.
Le Nano ESP32 est compatible avec l'Arduino IoT Cloud et prend en charge MicroPython. C'est une carte idéale pour se lancer dans le développement IoT.
Caractéristiques
Tiny footprint: Conçu en gardant à l'esprit le format Nano bien connu, sa taille compacte le rend parfait pour être intégré dans des projets autonomes.
Wi-Fi et Bluetooth: Exploitez la puissance du microcontrôleur ESP32-S3, bien connu dans le domaine de l'IoT, avec le plein support Arduino pour la connectivité sans fil et Bluetooth.
Support Arduino et MicroPython: Passez facilement de la programmation Arduino à MicroPython en quelques étapes simples.
Compatible avec l'Arduino IoT Cloud: Créez rapidement et facilement des projets IoT avec quelques lignes de code seulement. La configuration prend en charge la sécurité, ce qui vous permet de surveiller et de contrôler votre projet de n'importe où à l'aide de l'application Arduino IoT Cloud.
HID support: Simulez des dispositifs d'interface humaine, tels que des claviers ou des souris, via l'USB, ouvrant de nouvelles possibilités d'interaction avec votre ordinateur.
Spécifications
Microcontrôleur
u-blox NORA-W106 (ESP32-S3)
Connecteur USB
USB-C
Pins
Pins LED intégrées
13
Pins LED RVB intégrées
14-16
Pins d'E/S numériques
14
Pins d'entrée analogique
8
Pins PWM
5
Interruptions externes
Toutes les pins numériques
Connectivité
Wi-Fi
u-blox NORA-W106 (ESP32-S3)
Bluetooth
u-blox NORA-W106 (ESP32-S3)
Communication
UART
2x
I²C
1x, A4 (SDA), A5 (SCL)
SPI
D11 (COPI), D12 (CIPO), D13 (SCK). Utilisez n'importe quelle pin GPIO pour Chip Select (CS)
Alimentation
Tension d'E/S
3,3 V
Tension d'entrée (nominale)
6-21 V
Courant source par pin E/S
40 mA
Courant de décharge par pin E/S
28 mA
Vitesse d'horloge
Processeur
Jusqu'à 240 MHz
Mémoire
Mémoire ROM
384 ko
Mémoire SRAM
512 ko
Mémoire Flash externe
128 Mbit (16 Mo)
Dimensions
18 x 45 mm
Téléchargements
Fiche technique
Schémas
L'Arduino Nano Every est une évolution de la carte classique Arduino Nano mais qui dispose d'un processeur beaucoup plus puissant, l'ATMega4809. Cela vous permettra de réaliser des programmes plus importants qu'avec l'Arduino Uno (il dispose de 50 % de plus de mémoire programme), et a beaucoup plus de variables (la mémoire vive est 200 % plus grande).
Arduino Nano amélioré
Si vous avez utilisé l'Arduino Nano dans vos projets précédents, la Nano Every sera un substitut avec des broches équivalentes. Les principales différences sont un meilleur processeur et un connecteur micro-USB.
La carte est proposée en deux versions : sans ou avec connecteurs, ce qui permet d'intégrer le Nano Every dans tout type d'invention, y compris les wearables. La carte vient avec des connecteurs tessellés et aucun composant sur la face B. Ces caractéristiques vous permettent de souder la carte directement sur votre propre design, minimisant ainsi la hauteur de votre prototype.
Avons-nous mentionné l'amélioration du prix? Grâce à un processus de fabrication révisé, l'Arduino Nano Every coûte une fraction du prix du Nano original... qu'attendez-vous? Mettez cotre carte à jour maintenant!
Microcontrôleur
ATMega4809
Tension de fonctionnement
5 V
Tension d'entrée
7 V - 21 V
Broches d'entrée analogique
8
Broches de sortie analogique
Seulement par PWM
Interruptions externes
toutes les broches numériques
Courant continu par broche E/S
20 mA
Courant continu pour la broche de 3,3 V
50 mA
Memoire Flash
48 KB
SRAM
6 KB
EEPROM
256 Byte
Fréquence d'horloge
20 MHz
LED_Builtin
13
UART
1
SPI
1
I2C
1
Broches PWM
5
USB
utilise le ATSAMD11D14A
Longueur
45 mm
Largeur
18 mm
Poids
5 g
L'Arduino Nano RP2040 Connect est une carte Arduino basée sur RP2040 et équipée de wifi (802,11b/g/n) et du Bluetooth 4,2.
En plus de la connectivité sans fil, la carte est livrée avec un microphone pour le son et l'activation vocale et un capteur de mouvement intelligent à six axes avec des capacités d'IA. Une LED RVB est également disponible. 22 ports GPIO (20 avec prise en charge du PWM et huit entrées analogiques) permettent à l'utilisateur de commander, par exemple, des relais, des moteurs et des LED et de lire des interrupteurs et d'autres capteurs.
Elle offre une grande quantité de mémoire de programme avec 16 Mo de mémoire flash, une capacité plus que suffisante pour stocker de nombreuses pages Web ou d'autres données.
Spécifications techniques
Microcontrôleur
Raspberry Pi RP2040
Connecteur USB
Micro USB
Pins
Broches de LED intégrées
13
20
20
Broche d'entrée analogique
8
Broche PWM
20 (sauf A6, A7)
Interruptions externes
20 (Sauf A6, A7)
Connectivité
Wi-Fi
Nina W102 module uBlox
Bluetooth
Nina W102 module uBlox
Élément de sécurité
ATECC608A-MAHDA-T Crypto IC
Capteurs
IMU
LSM6DSOXTR (6 axes)
Microphone
MP34DT05
Communication
UART
Oui
I²C
Oui
SPI
Oui
Puissance
Tension de fonctionnement du circuit
3.3 V
Tension d'entrée (VIN)
5-21 V
Courant continu par broche d'entrée/sortie
4 mA
Fréquence d'horloge
Processeur
133 MHz
Mémoire
AT25SF128A-MHB-T
Circuit Flash 16 Mo
Nina W102 module uBlox
448 Ko de ROM, 520 Ko de SRAM, 16 Mo de Flash
Dimensions
45 x 18 mm
Poids
6 g
Téléchargements
Schémas
Brochage
Fiche technique
Des éclairages télécommandés - changez la couleur, les modes d'éclairage et allumez/éteignez via votre mobile
Station météo personnelle - enregistrez et surveillez les conditions météorologiques locales
Système d'alarme de sécurité - Détectez les mouvements et déclenchez des alertes
Système de suivi solaire - récupérez les données des planètes et des lunes du système solaire
Contrôle des stocks - suivez les entrées & les sortie
Jardin intelligent - surveillez et contrôlez l'environnement de vos plantes
Contrôle du thermostat - contrôle intelligent des systèmes de chauffage et de refroidissement
On pense à vous - envoyer des messages entre l'Oplà et l'Arduino IoT Cloud
Pour les utilisateurs plus avancés, le kit leur offre la possibilité de créer leurs propres appareils connectés et applications IoT grâce à la plateforme programmable ouverte offrant le contrôle ultime.
L'unité Oplà agit comme l'interface physique avec l'Arduino IoT Cloud vous fournissant un contrôle total à portée de main via l'application Arduino IoT Remote. Configurez et gérez tous les paramètres via le Arduino IoT Cloud, avec des tableaux de bord faciles à créer fournissant des relevés en temps réel à partir de vos appareils intelligents autour de la maison ou du lieu de travail.
L'ajustement des paramètres, la mise en marche et l'arrêt des appareils, l'arrosage des plantes, etc. sont tous contrôlables même en déplacement, avec l'application Arduino IoT Remote ou vous pouvez automatisez entièrement la configuration puis détendez-vous et profitez
Inclus
MKR IoT Carrier conçu pour ce kit, comprenant:
Écran OLED rond
Cinq boutons tactiles capacitifs
Capteurs embarqués (température, humidité, pression et lumière)
Deux relais de 24 V
Support de carte SD
Connecteurs plug and play pour différents capteurs
RGBC, Geste, et Proximité
IMU
18650 Li-Ion support de batterie rechargeable (batterie non incluse)
Five RGB LEDs
Arduino MKR WiFi 1010
Boîtier en plastique
Câble Micro USB
Capteur d'humidité
Capteur PIR
Câbles plug and play pour tous les capteurs
Applications
Des éclairages télécommandés
Station météo personnelle
Système d'alarme de sécurité
Système de suivi solaire
Contrôle des stocks
Jardin intelligent
Contrôle du thermostat
On pense à vous