Le Challenger RP2040 NFC est un petit ordinateur embarqué, équipé d'un contrôleur NFC intégré avancé (NXP PN7150), dans le format populaire Adafruit Feather. Il est basé sur une puce de microcontrôleur RP2040 de la Fondation Raspberry Pi qui est un Cortex-M0 double cœur pouvant fonctionner sur une horloge allant jusqu'à 133 MHz.
NFC Le PN7150 est une solution de contrôleur NFC complète avec micrologiciel intégré et interface NCI conçue pour une communication sans contact à 13,56 MHz. Il est entièrement compatible avec les exigences du forum NFC et est largement conçu sur la base des enseignements tirés de la génération précédente d'appareils NXP NFC. C'est la solution idéale pour intégrer rapidement la technologie NFC dans n'importe quelle application, en particulier les petits systèmes embarqués réduisant la nomenclature (BOM).
La conception intégrée avec une compatibilité totale avec le forum NFC offre à l'utilisateur toutes les fonctionnalités suivantes :
Micrologiciel NFC intégré fournissant tous les protocoles NFC en tant que fonctionnalité pré-intégrée.
Connexion directe à l'hôte principal ou au microcontrôleur, par bus physique I²C et protocole NCI.
Consommation d'énergie ultra faible en mode boucle d'interrogation.
Unité de gestion de l'énergie (PMU) intégrée très efficace permettant une alimentation directe à partir d'une batterie.
Caractéristiques
Microcontrôleur
RP2040 de Raspberry Pi (Cortex-M0 double cœur 133 MHz)
IPS
Un canal SPI configuré
I²C Deux canaux I²C configurés (I²C dédié pour le PN7150)
UART
Un canal UART configuré
Entrées analogiques
4 canaux d'entrée analogiques
Module NFC
PN7150 de NXP
Mémoire flash
8 Mo, 133 MHz
Mémoire SRAM
264 Ko (divisé en 6 banques)
Contrôleur USB 2.0
Jusqu'à 12 Mbit/s à pleine vitesse (USB 1.1 PHY intégré)
Connecteur de batterie JST
Pas de 2,0 mm
Chargeur LiPo intégré
Courant de charge standard de 450 mA
Dimensions
51x23x3.2mm
Poids
9g
Remarque : l'antenne n'est pas incluse.
Téléchargements
Fiche de données
Exemple de démarrage rapide
La Challenger RP2040 SD/RTC est une carte microcontrôleur au format Feather compatible Arduino/CircuitPython basée sur la puce Raspberry Pi Pico. Cette carte est équipée d'un lecteur de carte microSD et d'une horloge en temps réel, ce qui la rend très utile pour les applications d'enregistrement de données. Carte MicroSD Cette carte est équipée d'un connecteur de carte microSD qui peut accueillir des cartes microSD standard, ce qui permet à votre application de disposer de plusieurs gigaoctets d'espace de stockage pour les données des capteurs ou tout autre élément que vous souhaitez y placer. Avec un écran, vous pouvez également stocker des images sympas. Horloge en temps réel (RTC) Le MCP79410 est une horloge à temps réel hautement intégrée, dotée d'une mémoire non volatile et de nombreuses autres fonctions avancées. Ces caractéristiques comprennent un circuit de commutation de batterie pour l'alimentation de secours, un horodatage pour enregistrer les pannes de courant et un réglage numérique pour la précision. En utilisant un cristal de 32,768 kHz peu coûteux ou une autre source d'horloge, l'heure est suivie au format 12 ou 24 heures avec un indicateur AM/PM et un chronométrage à la seconde, à la minute, à l'heure, au jour de la semaine, au jour, au mois et à l'année. En tant que signal d'interruption ou de réveil, une sortie à drain ouvert multifonction peut être programmée comme sortie d'alarme ou comme sortie d'horloge qui prend en charge 4 fréquences sélectionnables. Spécifications Microcontrôleur Raspberry Pi RP2040 (Cortex-M0+ double cœur 133 MHz) SPI Un canal SPI I²C Un canal I²C UART Un canal UART Entrées analogiques 4 entrées analogiques Mémoire flash 8 Mo, 133 MHz Mémoire SRAM 264 Ko (divisé en 6 banques) Contrôleur USB 2.0 Jusqu'à 12 MBit/s à pleine vitesse (USB 1.1 PHY intégré) Connecteur de batterie JST Pas de 2,0 mm Chargeur LiPo embarqué Courant de charge standard de 500 mA RTC MCP79410 (utilise I²C0 (Wire) pour la communication) Carte SD Un canal SPI utilisé (utilise SPI1 pour se connecter à la carte SD) Dimensions 51 x 23 x 3,2 mm Poids 9 g Téléchargements Fiche technique Image RunCPM incluant la prise en charge des ports d'E/S HW CPM Image de fichier pour RunCPM Démarrer avec RunCPM pour la carte SD/RTC Challenger RP2040 Page de téléchargement de CircuitPython
Le Challenger RP2040 WiFi est un petit ordinateur embarqué équipé d'un module WiFi, dans le format populaire Adafruit Feather. Il est basé sur un microcontrôleur RP2040 de la Fondation Raspberry Pi, qui est un Cortex-M0+ à double cœur pouvant fonctionner à une fréquence de 133 MHz. Le RP2040 est associé à une mémoire flash haute vitesse de 8 Mo capable de fournir des données à la vitesse maximale. La mémoire flash peut être utilisée à la fois pour stocker des instructions pour le microcontrôleur et des données dans un système de fichiers. Le fait de disposer d'un système de fichiers facilite le stockage des données dans une approche structurée et facile à programmer. Le module peut être alimenté par une batterie au lithium-polymère connectée par un connecteur standard de 2,0 mm sur le côté de la carte. Un circuit de charge interne vous permet de charger votre batterie rapidement et en toute sécurité. L'appareil est livré avec une résistance de programmation qui règle le courant de charge à 250 mA. Cette résistance peut être remplacée par l'utilisateur pour augmenter ou diminuer le courant de charge, en fonction de la batterie utilisée. La section WiFi de cette carte est basée sur la puce ESP8285 d'Espressif qui est en fait une ESP8266 avec 1 Mo de mémoire flash intégrée dans la puce, ce qui en fait un module WiFi complet ne nécessitant que très peu de composants externes. La ESP8285 est connectée au microcontrôleur par un port série et le fonctionnement est contrôlé par un ensemble de commandes AT standardisées. Spécifications Microcontrôleur RP2040 du Raspberry Pi (Cortex-M0+ double cœur 133 MHz) SPI Un canal SPI I²C Un canal I²C UART Un canal UART (le second UART est utilisé pour la puce WiFi) Entrées analogiques 4 entrées analogiques Contrôleur WLAN ESP8285 d'Espressif (160 MHz single-core Tensilica L106) Mémoire flash 8 Mo, 133 MHz Mémoire SRAM 264 Ko (divisé en 6 banques) Contrôleur USB 2.0 Jusqu'à 12 MBit/s à pleine vitesse (USB 1.1 PHY intégré) Connecteur de batterie JST Pas de 2,0 mm Chargeur LiPo intégré Courant de charge standard de 250 mA LED NeoPixel intégrée LED RVB Dimensions de l'appareil 51 x 23 x 3,2 mm Poids 9 g Téléchargements Fiche technique Fiches de conception Errata des produits
Il s'agit d'un kit d'antenne 868 MHz 50 hm de 170 mm de long destiné à être utilisé avec les produits iLabs Challenger LoRa.
L'antenne peut s'incliner et pivoter, ce qui facilite son installation dans diverses applications.
Le kit est également livré avec un assemblage de câbles RF contenant un SMA (femelle) et un JK-IPEX/MHF/U.FL pour la connexion au PCB. Le coaxial est un câble de 1 à 13 mm de 50 Ohm et mesure 100 mm de long.
L'électronique est passionnée. C'est un plaisir amusant et instructif. Elle permet d'acquérir de nouvelles compétences, souvent utiles, à la maison et même au travail. Une expérience électronique avec ces circuits appropriés. Il donne vie à ses projets. Avant que le jour n'arrive, vous avez hâte de le voir ! Il est nécessaire de rassembler les articles pour la publication des articles du magazine d'électronique Elektor. Il sera le compagnon de vos progrès dans le monde de l'électronique.
Plus que commencer par l'électronique analogique. Vous pourrez découvrir les compositions et les circuits ainsi que les simples pour comprendre les fonctions, les interactions et les problèmes éventuels. La meilleure façon de progresser, c'est de faire des expériences réelles, car la théorie ne suffit pas. Un guide en direct pour un excellent guide de montages pratiques, notamment pour les débutants. Et pour en savoir plus, acquérir la meilleure expérience et connaissance.
La deuxième partie de la vie du monde du numérique électronique. En savoir plus sur l’utilisation des microcontrôles. Les effets des composants sont discrets grâce aux circuits intégrés des principaux composants des microcontrôleurs. La programmation à long terme de BASCOM, basée sur les pré-requis à la mise en œuvre d'Arduino, BBC micro:bit et d'autres, facilite la prise en compte de l'apprentissage. Voici une description détaillée des nombreuses applications des microcontrôleurs, abordables pour les néophytes. Ici, programmation et soudage font bon ménage !
Le langage de programmation Python est apprécié par les pédagogues parce que sa syntaxe le rend facile à comprendre. Il s'est également imposé chez les informaticiens expérimentés. La société Adafruit a développé une version spéciale de Python pour l'embarquer sur les microcontrôleurs à 32 bits : CircuitPython.
Ce livre permettra au lecteur de s'initier à la programmation en CircuitPython sur deux cartes : Feather BlueFruit Sense (également appelée Feather nRF52840 Sense) et CLUE nRF52840 Express. Chacune est animée par le SoC nRF52840 de NORDIC avec une architecture à 32 bits.
Pour ce voyage dans le monde de la programmation embarquée, l'auteur sort du chemin classique, à savoir un cours complet sur la programmation orientée objet appliquée à ce langage. Il préfère emmener le lecteur directement sur le terrain avec des projets qui mettent en oeuvre les cartes et différents périphériques. Plus d'une quarantaine d'exemples et de montages permettent de découvrir la richesse de CircuitPython. Toutefois l'auteur s'est imposé une limite pour ne pas décourager les novices : le code de chaque projet ne dépasse jamais la centaine de lignes. Pour ce qui est du matériel, là aussi la simplicité domine : aucun programmateur, un simple PC suffit ; aucun soudage grâce au câblage sur platine d'essai. Les cartes d'extension FeatherWing à enficher sur la Feather nRF52840 Sense permettent de démultiplier ses fonctions : matrice de LED, enregistreur de données, écran à encre électronique, écran OLED, écran TFT, commande de moteurs, audio, relais…
Toutes les étapes (assemblage des différents composants, installation des bibliothèques requises, programmation, tests…) sont expliquées en détail. Le code des différents exemples et projets est disponible sur Github. Le résultat de chaque projet est même présenté sur de courtes vidéos disponibles sur YouTube.
À la fin de sa lecture, le nouveau Pythonien pourra facilement approfondir les notions abordées et donner vie à ses propres projets grâce aux outils qu'il aura essayés.
Ce livre s'adresse aux lycéens et étudiants ainsi qu'à toute la communauté des makers.
Chaîne YouTube de l'auteur
YouTube (Michaël Bottin)
Ready to explore the world around you? By attaching the Sense HAT to your Raspberry Pi, you can quickly and easily develop a variety of creative applications, useful experiments, and exciting games.
The Sense HAT contains several helpful environmental sensors: temperature, humidity, pressure, accelerometer, magnetometer, and gyroscope. Additionally, an 8x8 LED matrix is provided with RGB LEDs, which can be used to display multi-color scrolling or fixed information, such as the sensor data. Use the small onboard joystick for games or applications that require user input. In Innovate with Sense HAT for Raspberry Pi, Dr. Dogan Ibrahim explains how to use the Sense HAT in Raspberry Pi Zero W-based projects. Using simple terms, he details how to incorporate the Sense HAT board in interesting visual and sensor-based projects. You can complete all the projects with other Raspberry Pi models without any modifications.
Exploring with Sense HAT for Raspberry Pi includes projects featuring external hardware components in addition to the Sense HAT board. You will learn to connect the Sense HAT board to the Raspberry Pi using jumper wires so that some of the GPIO ports are free to be interfaced to external components, such as to buzzers, relays, LEDs, LCDs, motors, and other sensors.
The book includes full program listings and detailed project descriptions. Complete circuit diagrams of the projects using external components are given where necessary. All the projects were developed using the latest version of the Python 3 programming language. You can easily download projects from the book’s web page. Let’s start exploring with Sense HAT.
Ready to explore the world around you? By attaching the Sense HAT to your Raspberry Pi, you can quickly and easily develop a variety of creative applications, useful experiments, and exciting games.
The Sense HAT contains several helpful environmental sensors: temperature, humidity, pressure, accelerometer, magnetometer, and gyroscope. Additionally, an 8x8 LED matrix is provided with RGB LEDs, which can be used to display multi-color scrolling or fixed information, such as the sensor data. Use the small onboard joystick for games or applications that require user input. In Innovate with Sense HAT for Raspberry Pi, Dr. Dogan Ibrahim explains how to use the Sense HAT in Raspberry Pi Zero W-based projects. Using simple terms, he details how to incorporate the Sense HAT board in interesting visual and sensor-based projects. You can complete all the projects with other Raspberry Pi models without any modifications.
Exploring with Sense HAT for Raspberry Pi includes projects featuring external hardware components in addition to the Sense HAT board. You will learn to connect the Sense HAT board to the Raspberry Pi using jumper wires so that some of the GPIO ports are free to be interfaced to external components, such as to buzzers, relays, LEDs, LCDs, motors, and other sensors.
The book includes full program listings and detailed project descriptions. Complete circuit diagrams of the projects using external components are given where necessary. All the projects were developed using the latest version of the Python 3 programming language. You can easily download projects from the book’s web page. Let’s start exploring with Sense HAT.
An Introduction to RISC-V
RISC-V is an Instruction Set Architecture (ISA) that is both free and open. This means that the RISC-V ISA itself does not require a licensing fee, although individual implementations may do so. The RISC-V ISA is curated by a non-profit foundation with no commercial interest in products or services that use it, and it is possible for anyone to submit contributions to the RISC-V specifications. The RISC-V ISA is suitable for applications ranging from embedded microcontrollers to supercomputers.
This book will first describe the 32-bit RISC-V ISA, including both the base instruction set as well as the majority of the currently-defined extensions. The book will then describe, in detail, an open-source implementation of the ISA that is intended for embedded control applications. This implementation includes the base instruction set as well as a number of standard extensions.
After the description of the CPU design is complete the design is expanded to include memory and some simple I/O. The resulting microcontroller will then be implemented in an affordable FPGA development board (available from Elektor) along with a simple software application so that the reader can investigate the finished design.
Le contrôleur de température du thermostat numérique intelligent est un petit contrôleur de commutateur (77 x 51 mm) qui vous permet de créer votre propre thermostat. Avec son capteur NTC et ses afficheurs LED, vous pouvez commuter jusqu'à 10A 220V en fonction de la température mesurée.
The Internet of Things (IoT) is a new concept in intelligent automation and intelligent monitoring using the Internet as the communications medium. The “Things” in IoT usually refer to devices that have unique identifiers and are connected to the Internet to exchange information with each other. Such devices usually have sensors and/or actuators that can be used to collect data about their environments and to monitor and control their environments. The collected data can be processed locally or it can be sent to centralized servers or to the cloud for remote storage and processing. For example, a small device at the size of a matchbox can be used to collect data about the temperature, relative humidity and the atmospheric pressure. This data can be sent and stored in the cloud. Anyone with a mobile device can then access and monitor this data at any time and from anywhere on Earth provided there is Internet connectivity. In addition, users can for example, adjust the central heating remotely using their mobile devices and accessing the cloud.
This book is written for students, for practising engineers and for hobbyists who want to learn more about the building blocks of an IoT system and also learn how to setup an IoT system using these blocks.
Chapter 1 is an introduction to the IoT systems. In Chapter 2, the basic concepts and possible IoT architectures are discussed. The important parts of any IoT system are the sensors and actuators and they are described briefly in Chapter 3. The devices in an IoT system usually communicate with each other and the important aspect of IoT communication is covered in Chapter 4. Chapter 5 proceeds with the features of some of the commonly used development kits. One of these, the Clicker 2 for PIC18FJ manufactured by mikroElektronika, can be used as a processor in IoT systems and its features are described in detail in Chapter 6. A popular microcontroller C language, mikroC Pro for PIC gets introduced in Chapter 7. Chapter 8 covers the use of a click board with the Clicker 2 for PIC18FJ development kit. Similarly, the use of a sensor click board is described as a project in Chapter 9, and an actuator board in Chapter 10. Chapters 11 and 12 cover Bluetooth and Wi-Fi technologies in microcontroller based systems, and the remaining chapters of the book demo the creation of a simple Wi-Fi based IoT system with cloud-based data storage.
This book has been written with the assumption that the reader has taken a course on digital logic design and has been exposed to writing programs using at least one high-level programming language. Knowledge of the C programming language will be very useful. Also, familiarity with at least one member of the PIC series of microcontrollers (e.g. PIC16 or PIC18) will be an advantage. The knowledge of assembly language programming is not required because all the projects in the book are based on using the C language. If you are a total beginner in programming you can still access the e-book, but first you are advised to study introductory books on microcontrollers.
There are many so-called 'Arduino compatible' platforms on the market. The ESP8266 – in the form of the WeMos D1 Mini Pro – is one that really stands out. This device includes WiFi Internet access and the option of a flash file system using up to 16 MB of external flash memory. Furthermore, there are ample in/output pins (though only one analogue input), PWM, I²C, and one-wire. Needless to say, you are easily able to construct many small IoT devices!
This book contains the following builds:
A colourful smart home accessory
refrigerator controller
230 V power monitor
door lock monitor
and some further spin-off devices.
All builds are documented together with relevant background information for further study. For your convenience, there is a small PCB for most of the designs; you can also use a perf board. You don’t need to be an expert but the minimum recommended essentials include basic experience with a PC, software, and hardware, including the ability to surf the Internet and assemble PCBs.
And of course: A handle was kept on development costs. All custom software for the IoT devices and PCB layouts are available for free download from at Elektor.com.
Les modules TapNLink fournissent des interfaces sans fil pour relier les systèmes électroniques aux appareils mobiles et au Cloud. TapNLink se connecte directement au microcontrôleur du système cible. Il s'intègre et est alimenté par le système cible. Tous les produits TapNLink sont facilement configurés pour contrôler l'accès de différents types d'utilisateurs aux données du système cible. TapNLink facilite la création rapide d'interfaces homme-machine (IHM) fonctionnant sur les mobiles Android, iOS et Windows. Les applications HMI sont facilement personnalisées pour différents utilisateurs et peuvent être déployées et mises à jour pour suivre l'évolution des exigences du système et des besoins des utilisateurs.
Les modules Wi-Fi TapNLink peuvent également être configurés pour connecter le système cible en permanence à un réseau sans fil et au Cloud. Cela permet une journalisation permanente des données et des alarmes du système cible.
Caractéristiques
Canaux sans fil
Wi-Fi 802.11b/g/n
Bluetooth basse consommation (BLE 4.2)
Balise de communication en champ proche (NFC) de type 5 (ISO/IEC 15693)
Connexions cibles prises en charge : se connecte sur 2 GPIO du microcontrôleur cible et prend en charge :
Interface série avec protocole Software Secure Serial Port (S3P)
Interface série avec protocole de débogage ARM SWD.
UART avec protocole Modbus
Prise en charge de la plate-forme mobile
Applications Web HTML5 (Android, iOS)
API pour Cordova (Android, iOS, Windows 10)
Java (Android, iOS natif)
Générateur d'applications de voiture pour mobiles Android et iOS
Sécurité
Profils d'accès configurables
Mots de passe configurables et cryptés
Cryptage des données au niveau du module AES-128/256
Appairage sécurisé configurable avec NFC
Dimensions : 38 mm x 28 mm x 3 mm
Caractéristiques électriques
Tension d'entrée : 2,3 V à 3,6 V
Basse consommation énergétique:
Veille : 100 µA
Émission/réception NFC : 7 mA
Réception Wi-Fi : 110 mA
Émission Wi-Fi : 280 mA (802.11b)
Plage de température : -20°C - +55°C
Conformité
CE (Europe), FCC (États-Unis), IC (Canada)
ATTEINDRE
RoHS
DEEE
Informations de commande
Numéro de pièce de base : TnL-FIW103
Quantité minimale de commande : 20 modules
Modules TapNLink pré-qualifiés, préprogrammés et prêts à configurer.
Logiciel de configuration et de test IoTize Studio
Logiciel pour IHM sur appareils mobiles (iOS, Android, Windows 10)
Infrastructure IoTize Cloud MQTT (open source)
Pour plus d'informations, consultez la fiche technique ici .
Cette antenne extérieure en fibre de verre est optimisée pour recevoir des signaux dans la bande ISM de 868 MHz, prenant en charge des technologies telles que Sigfox, LoRa, Mesh Networks et Helium. L'antenne se compose d'un dipôle demi-onde avec un gain de 4,4 dBi, encapsulé à l'intérieur d'un radôme en fibre de verre avec une base de montage en aluminium.
Spécifications
Fréquence
868-870 MHz
Type d'antenne
Dipôle 1/2 onde
Connecteur
N femelle
Type d'installation
Diamètre du mât 35-60 mm (support de montage inclus)
Gagner
4,4 dBi
SWR
≤1,5
Type de polarisation
Vertical
Puissance maximale
10 W
Impédance
50 Ohms
Dimensions
52,5 cm
Diamètre du tube
26 mm
Antenne de base
32 mm
Température de fonctionnement
−30°C à +60°C
Inclus
Antenne bande ISM (868 Mhz)
Support de mât (pour installation sur un mât de 35 à 60 mm de diamètre)
Le porte-stylo de l'AxiDraw maintient normalement le stylet parallèlement à la face avant de la glissière verticale du stylet, soit verticalement, soit à 45° par rapport à la verticale.
Cet adaptateur en aluminium épais se place entre la face avant de la diapositive verticale et le clip du stylet, et sert à faire pivoter la pointe du stylet de 45° supplémentaires, non pas par rapport à la verticale mais par rapport à la face avant de la diapositive verticale. Cela donne à l'AxiDraw la possibilité de tenir un stylo dans une position « droitière », par opposition à la position normale « main centrale » (faute d'une meilleure description).
La poignée pour droitier permet de tenir le stylo à un angle constant adapté à une utilisation avec des stylos ordinaires, mais également avec des stylos tronqués, italiques, parallèles et à pointe biseautée.
Compatibilité
Cet adaptateur est compatible uniquement avec les traceurs à stylet de la famille AxiDraw V3 qui montent le stylet sur une glissière verticale à 2 trous. Cela inclut toutes les unités AxiDraw V3/A3 et AxiDraw V3 XLX, ainsi que toutes les unités AxiDraw V3 fabriquées après février 2017.
L'I²C est omniprésent, vous pouvez le trouver dans votre téléphone, dans l'électronique embarquée, dans tous les microcontrôleurs, Raspberry Pi et cartes mères d'ordinateurs. Il est applicable dans une grande variété de cas, mais le seul inconvénient est qu'il peut être difficile d'apprendre à l'utiliser correctement et d'éviter un débogage pénible.
Cet appareil vous permet de comprendre plus facilement ce qui se passe à l'intérieur, car I²CDriver dispose d'un affichage clair par analyseur logique des lignes de signal ainsi que d'un décodage graphique du trafic I²C.
De plus, il affiche en permanence une carte d'adresses de tous les appareils I²C connectés, de sorte que lorsque vous connectez un appareil, il s'allume sur la carte. La surveillance du courant et de la tension vous permet de détecter rapidement les problèmes électriques. Les fils à code couleur inclus facilitent le branchement ; aucun schéma de brochage n'est requis. Il comprend une alimentation séparée de 3,3 V pour vos appareils, un compteur de courant côté haut et des résistances pullup programmables pour les deux lignes I²C.
Grâce aux 3 ports I²C, vous pouvez connecter plusieurs appareils simultanément sans aucun effort.
I²CDriver est livré avec un logiciel pour le contrôler depuis :
une interface graphique
la ligne de commande
C et C++ utilisant un seul fichier source
Python 2 et 3, à l'aide d'un module
Vous pouvez contrôler le matériel I²C à l'aide des outils PC que vous connaissez et réduire le temps de développement nécessaire pour que l'appareil fasse ce que vous voulez.
L'étalonnage d'appareils tels que des accéléromètres, des magnétomètres et des gyroscopes est beaucoup plus simple et rapide lorsqu'il est effectué directement sur le PC via I²CDriver.
De plus, l'écran intégré affiche une carte thermique de tous les nœuds de réseau actifs. Ainsi, dans un réseau I²C comportant plusieurs appareils, vous pouvez voir en un coup d'œil lesquels sont les plus actifs. I²CDriver peut renvoyer tout le trafic I²C vers le PC. Le mode de capture d'I²CDriver enregistre de manière fiable chaque bit dans un journal horodaté exhaustif. Ceci est vraiment utile pour le débogage, l’analyse et l’ingénierie inverse. Les formats pris en charge incluent le texte, CSV et VCD.
Caractéristiques
Matériel ouvert : la conception, le firmware et tous les outils sont sous licence BSD
Affichage en direct : vous montre exactement ce qu'il fait à tout moment
Transfert rapide : transferts I²C soutenus à 400 et 100 kHz
Surveillance de l'alimentation USB : moniteur de tension de ligne USB pour détecter les problèmes d'alimentation, jusqu'à 0,01 V
Surveillance de la puissance cible : mesure du courant côté haut de l'appareil cible, jusqu'à 5 mA
Pullups I²C : résistances pullup I²C programmables, avec réglage automatique
Trois ports I²C : trois ports I²C identiques, chacun avec alimentation et signaux I²C
Cavaliers : cavaliers à code couleur inclus dans chaque niveau de contribution
Sortie 3.3 : les niveaux de sortie sont de 3,3 V, tous tolèrent 5 V
Prend en charge toutes les fonctionnalités I²C : adressage I²C 7 et 10 bits, étirement d'horloge, arbitrage de bus
Composants robustes : utilise un adaptateur série USB FTDI et un contrôleur EFM8 de qualité automobile de Silicon Labs
Rapports d'utilisation : rapporte la disponibilité, la température et l'exécution du CRC de tout le trafic.
Contrôle flexible : logiciel hôte GUI, ligne de commande, C/C++ et Python 2/3 fourni pour Windows, Mac et Linux
Détails
Courant de sortie maximum : jusqu'à 470 mA
Courant de l'appareil : jusqu'à 25 mA
Dimensions : 61 mm x 49 mm x 6 mm
Interface ordinateur : USB 2.0, connecteur micro USB
Contenu (I²CDriver Core)
1x pilote I²C
3x Ensemble de cavaliers de connexion
L'émulateur/débogueur JLINK V9 Arm USB-JTAG est un outil performant et fiable pour la programmation et le débogage des microcontrôleurs ARM Cortex-M, Cortex-A/R et autres microcontrôleurs compatibles via les interfaces JTAG et SWD.
Caractéristiques
Compatibilité universelle : prend en charge une large gamme de microcontrôleurs et de cœurs ARM, notamment Cortex-M0, M3, M4, M7, A5, A7, A9 et R4.
Performances haut débit : débit de données rapide pour la programmation Flash et le débogage en temps réel avec une latence minimale.
Prise en charge multi-interfaces : offre les modes JTAG et SWD, pour une utilisation flexible dans différents environnements de développement.
Plug & Play via USB : connexion facile à votre PC grâce à l'interface USB 2.0 ; Aucune alimentation externe requise.
Support logiciel robuste : Entièrement compatible avec les outils logiciels SEGGER J-Link et pris en charge par les principaux IDE, notamment Keil MDK, IAR EWARM, SEGGER Embedded Studio et bien d'autres.
Inclus
1x JLINK V9 Émulateur/débogueur USB-JTAG Arm
1x Câble USB
1x Câble de connexion
Le JOY-iT DMSO2D72 est votre outil de travail idéal pour un usage votre atelier ou à l'extérieur. Il combine un oscilloscope deux canaux, un générateur de signaux pour tout type d'onde ainsi qu'un multimètre avec 6 types de mesure différents dans un seul appareil et il offre toutes les fonctions que vous attendez individuellement de ses appareils.
JOY-iT a accordé une importance particulière à une manipulation simple, claire et pratique afin de rendre le travail aussi agréable que possible pour l'utilisateur. Pour cela, le DMSOD72 est équipé d'une fonction de mesure automatique 'à un bouton' et d'une page 'à un bouton'. En plus, 2 signaux peuvent être comparés directement sur l'écran LCD couleur 2,8' 65K. L'alimentation électrique est assurée par deux piles au lithium 18650, incluses dans la fourniture, qui permettent un fonctionnement continu d'une journée ainsi qu'une autonomie en veille allant jusqu'à 8 semaines. En outre, un fonctionnement via l'interface USB-C est également possible, au cours duquel les batteries sont chargées simultanément.
Afin de protéger parfaitement l'appareil lors d'une 'utilisation en extérieur', le DMSO2D72 a été équipé d'une gaine en silicone, qui offre une protection contre les chocs, la poussière et la chaleur. Le logiciel complet et très convivial est disponible en anglais, allemand et français et la langue peut être commutée facilement sur l'appareil.
Vous serez également impressionné par le logiciel PC, qui vous offre une multitude de fonctions avec une très grande facilité d'utilisation.
Spécifications générales
Display type
2.8' 64K color TFT-LCD
Display resolution
320 x 240
Display settings
Adjustable background brightness, backlight duration, auto power off time
Protective case
Silicon cover, good impact resistance, outstanding heat resistance, easy to disassemble
Special features
mobile use through battery operation, 3-in-1 device (oscilloscope, signal generator, multimeter), 3 languages (German, English, French)
Assembly / Stand function
45° suspension bracket
Interface
USB Type C for power/data
Rechargeable battery
2x 16850 Lithium
Charging current
5 V / 2 A
Battery life
In use: A full dayIn standby: Up to 8 weeks
PC software
Windows 7 and higher
Operating temperature
0-50°C
Dimensions
199 x 98 x 40 mm
Weight
624 g
Oscilloscope
Channels
2 + DMM + AWG
Bandwidth
70 MHz
Sampling Rate
250 MSa/s Single channel125 MSa/s Dual channel
Vertical resolution
10 mV - 10 V
Automatic measurement of
Frequency and amplitude
Manual cursor measurement
Voltage and time
Output impedance (DC)
25 pF ±3 pF; 1 MΩ ±2%
Maximum input voltage
150 V RMS
Générateur de signaux
Sampling rate
250 MSa/s
Vertical resolution
12 bits
Waveforms
Sine, square, triangle, trapezoid, and many more
Sine
1 Hz - 25 MHz
Square
1 Hz - 10 MHz
Triangle
1 Hz - 1 MHz
Trapezoid
1 Hz - 5 MHz
Frequency resolution
1 Hz
Output impedance
50 Ω
Multimètre numérique
6 Multimeter measuring modes
Voltage, current, resistance, capacity, diode, on-off
Max. resolution
4000 Counts
Ranges
Voltage
0 µV - 600 V DC0 mV - 600 V AC, 40-400 Hz
Current
0 µA - 10 A
Resistance
0 mΩ - 40 MΩ
Capacity
0 pF - 100 µF
Diode
0-2 V
On-off
<50 Ω
Inclus
JOY-iT 3-in-1 Handheld DMSO2D72
2 rechargeable batteries (18650, 2600 mAh)
Passive 80 MHz Probe + accessories
2x BNC to crocodile clip coaxial cable
2x DMM test lead
USB to USB-C cable
USB power supply (5 V, 2 A)
Téléchargements
Datasheet
Manual
PC Software 1.1.10
Flash Manual 28-07-2021
Flash Software
Latest firmware version (13-01-2022)
Avec le grand écran tactile TFT de 3,5 pouces, vous pouvez construire une mini tablette PC basée sur un Raspberry Pi. L'écran, d'une résolution maximale de 480x320 pixels, se branche simplement sur les connecteurs GPIO existants.
Caractéristiques
Écran : 3,5' (8,89 cm)
Résolution : 480x320 pixels
Type d'écran tactile : résistif
Contrôleur d'écran tactile : XPT2046
Couleurs : 65536
Rétroéclairage : LED
Connexion : en-tête GPIO
Rapport hauteur/largeur : 8:5
Taille de l'écran : 85 x 56 mm
This 12.7 (5") touchscreen display stands out through its contrasty and sharp image. It offers a maximum resolution of 800 x 480 Pixels. A particular HDMI adapter is delivered with the display, with which this can be attached directly to the Raspberry and can be fixed to an unit with the aid of openings for the screws.
Features
Display: 5" (12.7 cm)
Weight: 159 g
Resolution: 800 x 480 pixels
Display Type: Touch-Control
Amount HDMI-HDMI Adapter: 1x
Micro USB Interface (only Power): 1x
Supports Raspberry: Raspbian, Ubuntu
Dimensions, without mounting: 120 x 79 x 7 mm
Scope of supply: 5 inch HDMI LCD, HDMI-HDMI Adapter, Touchpen
The RGB matrix module is equipped with 4096 LEDs and is characterized by a particularly small grid size of only 3mm. This makes it ideal for pictorial representations. Video sequences can also be displayed.
The module is supplied with the necessary cables. It is perfectly suited in combinations with single board computers like the Raspberry Pi, Arduino, BBC Microbit and many more.
Specifications
Display
RGB-LED
Resolution
64 x 64
Amount of LED
4096 LEDs
LED Size
3 mm Pitch
Supply Voltage
5 V
Max. Power Input
40 W
Control
1/32 Scan
Operating Temperature
-20~55°C
Viewing Angle
140°
Pixel Density
111111 Pixel/m²
Dimensions
192 x 192 x 14 mm
Weight
246 g
Items Shipped
LED-Matrix, Kabel
Downloads
Datasheet
Manual
Cet écran tactile de 7' convainc par ses nombreuses possibilités d'application. L'écran peut être connecté via HDMI ainsi que via VGA. Il dispose d'un connecteur audio 3,5 mm et d'un connecteur JST 4 broches, sur lequel peuvent être connectés un casque ou deux haut-parleurs 2 W / 5 Ω. Le logiciel intégré permet de configurer les paramètres tels que le contraste et la luminosité à l'aide des boutons sur le côté. Caractéristiques
Type d'écran LCD
IPS
Résolution
1024x600
Contraste
800:1
Luminosité
350 CD/m²
Multi-touches
Capacitif, 5 Points
Connexions
Connexions HDMI, VGA, Audio 3,5 mm, connecteur JST pour deux haut-parleurs 2 W / 5 Ω
Source de courant
5V/2A
Angle de vue
175°
Couleurs
16,7 millions
Autres particularités
Des pastilles de soudure supplémentaires pour amener les boutons au
Dimensions
165x124x13mm
Inclus
1x écran 7'
1x câble micro-USB
1x câble VGA
1x câble HDMI
1x câble HDMI-microHDMI
Téléchargements
Fiche de données
Manuel
Cet afficheur est compatible avec l’écran Nokia 5110 ce qui le rend parfaitement apte à afficher des données ou des graphiques de valeurs mesurées sur un microcontrôleur ou un ordinateur monocarte. De plus, l'écran est compatible avec tous les Raspberry Pi, Arduino, CubieBoard, Banana Pi et microcontrôleurs sans effort supplémentaire. Caractéristiques Processeur Philips PCD8544 Interface SPI Resolution 84 x 48 Pixels Alimentation 2,7-3,3 V Fonctions spéciales Rétroéclairage Compatible avec Raspberry Pi, Arduino, CubieBoard, Banana Pi and microcontroller Dimensions 45 x 45 x 14 mm Weight 14 g
Ce boîtier en aluminium au design précieux est très robuste et protège parfaitement votre Raspberry Pi 4 contre les influences extérieures. Il y a des découpes pour toutes les interfaces afin de les rendre accessibles. Le canal fraisé sur la face supérieure sert de dissipateur thermique et à l'intérieur du boîtier, le boîtier est en contact direct avec le CPU et la RAM pour maximiser les résultats de refroidissement. Caractéristiques
Couleur : Noir mat (noir canon de fusil)
Matériau : fonte d'aluminium de haute qualité
Particularités : Fraisage de canaux qui sert de dissipateur thermique, découpes pour toutes les interfaces, dissipateur thermique en contact avec le CPU et la RAM du Raspberry Pi pour de meilleures performances de refroidissement
Dimensions : 91 x 65 x 34 mm
Articles livrés
Boîtier en aluminium
Des vis
Coussinets de conduction thermique