Le kit SSD Raspberry Pi contient un Raspberry Pi M.2 HAT+ avec un Raspberry Pi NVMe SSD. Il débloque des performances exceptionnelles pour les applications gourmandes en I/O sur Raspberry Pi 5, y compris un démarrage ultra-rapide lors du démarrage à partir d'un SSD.
Le kit SSD Raspberry Pi est également disponible avec une capacité de 512 Go.
Caractéristiques
40k IOPS (lecture aléatoire de 4 Ko)
70k IOPS (d'écritures aléatoires de 4 Ko)
Conforme à la spécification Raspberry Pi HAT+
Inclus
SSD NVMe de 256 Go
M.2 HAT+ pour Raspberry Pi 5
Embase d'empilage GPIO 16 mm
Kit de matériel de montage (entretoises, vis)
Téléchargements
Datasheet
YARD Stick One (Yet Another Radio Dongle) est un circuit intégré émetteur-récepteur sans fil sub-1 GHz sur un dongle USB. Il est basé sur le Texas Instruments CC1111.
YARD Stick One peut émettre ou recevoir des signaux sans fil numériques à des fréquences inférieures à 1 GHz. Il utilise le même circuit radio que le populaire IM-Me. Les fonctions radio qui sont possibles en personnalisant le firmware IM-Me sont maintenant à portée de main lorsque vous connectez YARD Stick One à un ordinateur via USB.
Caractéristiques
Transmission et réception semi-duplex
Fréquences de fonctionnement officielles : 300-348 MHz, 391-464 MHz et 782-928 MHz
Fréquences de fonctionnement non officielles : 281-361 MHz, 378-481 MHz et 749-962 MHz
Modulations : ASK, OOK, GFSK, 2-FSK, 4-FSK, MSK
Débits de données jusqu'à 500 kbps
USB 2.0 haute vitesse
Connecteur d'antenne femelle SMA (50 ohms)
Alimentation du port d'antenne contrôlée par logiciel (max 50 mA à 3,3 V)
Filtre passe-bas pour éliminer les harmoniques lors de l'utilisation dans les bandes 800 et 900 MHz
En-tête d'expansion et de programmation compatible GoodFET
Points de test de programmation compatibles GIMME
Open source
Téléchargements
Documentation
GitHub
Construisez votre station météo idéale ou explorez les données environnementales avec le monde entier. Avec de nombreux projets pratiques pour Arduino, Raspberry Pi, NodeMCU, ESP32 et autres cartes de développement.
Les stations météo jouissent d’une grande popularité depuis des décennies. Tous les magazines d’électronique, qu’ils soient récents ou non, ont publié et publient régulièrement des articles sur la construction d’une station météo. Au fil des années, elles sont devenues de plus en plus sophistiquées et peuvent aujourd’hui être entièrement intégrées dans la maison intelligente. Ceci implique toutefois souvent une fidélité à un fabricant de produits de marque (coûteux) pour tous les composants.
Cependant, avec votre propre station météo, vous pouvez facilement suivre le rythme et même capturer des relevés que les appareils commerciaux ne peuvent pas réaliser. Le plaisir ne manque pas : vous développerez de manière ludique vos connaissances en électronique, en cartes de développement de microcontrôleurs modernes et en langages de programmation. Pour moins de dix euros, vous pouvez collecter des données environnementales initiales et étendre votre système au fur et à mesure que votre intérêt grandit.
Dans ce numéro
Sur la route du vent et de la météo
Écran météo OpenWeatherMap à affichage fluorescent
Les composés organiques volatils dans l‘air que nous respirons
Travailler avec les capteurs MQ : mesurer le monoxyde de carbone
Détecteur de CO2 avec connexion IdO vers ThingSpeak
Un arrosage automatique pour vos plantes
Un climat intérieur sain : la température et l‘humidité de l‘air sont importants
Thermomètre avec tubes Nixie
Une maison météo rétro pour toute la famille
Mesurez la pression atmosphérique et la température avec précision
Un détecteur de coups de soleil
Capteur maison pour la durée d‘ensoleillement
Le smartphone l‘indique : brouillard ou bonne visibilité ?
Détecter les tremblements de terre
Les niveaux des cours d‘eau et des réservoirs
Évaluer la valeur du pH de l’eau
Détecter les rayonnements radioactifs
Avec le GPS, vous savez où se trouve votre capteur
Enregistrer les fichiers journaux avec horodatage sur des cartes SD
LoRaWAN, The Things Network et ThingSpeak
Exploiter la passerelle LoRaWAN pour le TTN
Affichage géant à led avec prévisions météo
GreatFET One est le meilleur ami du hacker matériel. Avec une conception open source extensible, deux ports USB et 100 broches d'extension, GreatFET One est votre gadget essentiel pour le piratage, la création et l'ingénierie inverse. En ajoutant des cartes d'extension appelées voisins, vous pouvez transformer GreatFET One en un périphérique USB qui fait presque tout.
Que vous ayez besoin d'une interface vers une puce externe, d'un analyseur logique, d'un débogueur ou simplement d'un grand nombre de broches à bit-bang, le GreatFET One polyvalent est l'outil qu'il vous faut. L'USB haut débit et une API Python permettent à GreatFET One de devenir votre interface USB personnalisée avec le monde physique.
Caractéristiques
Protocoles série : SPI, I²C, UART et JTAG
E/S numériques programmables
E/S analogiques (ADC/DAC)
Analyse logique
Débogage
L'acquisition des données
Quatre LED
Fonctions USB polyvalentes
Moteur série de streaming assisté par matériel à haut débit
Téléchargements
Documentation
GitHub
Maintenant, vous pouvez connecter vos cartes Arduino avec le câble USB officiel d'Arduino. Grâce à une connexion USB-C vers USB-C avec un adaptateur USB-A, ce câble USB de données peut facilement relier vos cartes Arduino à l'appareil de programmation de votre choix.
Le câble USB d'Arduino possède une gaine tressée en nylon aux couleurs typiques d'Arduino, blanc et teal (bleu-vert). Les connecteurs ont une coque en aluminium qui protège votre câble tout en ayant un aspect élégant.
Longueur : 100 cm
Coque en aluminium avec logo
Gaine tressée en nylon blanc et teal
From Rubbing Amber to Swiping Glass
"The story of electricity, told one connection at a time."Why does rubbing amber attract dust? How did we go from that curious effect to a world where screens respond to a single touch? And how did we get from mysterious sparks to tiny chips packed with billions of transistors?
For centuries, electricity puzzled and fascinated those who encountered its curious effects—long before it even had a name. From the earliest observations of static charge to the complex electronics that shape our lives today, this book traces the gradual, and often surprising, story of how humanity came to understand and harness this powerful force.
This book offers an engaging and accessible account of the people, ideas, and inventions that transformed electricity from a scientific curiosity into the foundation of our digital age. Along the way, you’ll meet a host of inquisitive minds—some famous, others less so—whose persistence and creativity helped unravel the mysteries of the natural world and gave rise to the technologies we now take for granted.
Covering everything from Leyden jars and batteries to transistors, microcontrollers and the internet, this book presents a clear and enjoyable overview of electronics and its relatively short, yet rich, history.
Whether you have a technical background or simply a curiosity about how things work, From Rubbing Amber to Swiping Glass offers a thoughtful look at how far we’ve come—and a gentle nudge to wonder what might come next.
LWL01 est alimenté par une pile bouton CR2032, dans un bon cas de couverture réseau LoRaWAN, il peut transmettre jusqu'à 12 000 paquets de liaison montante (basés sur SF 7, 14 dB). Dans une mauvaise couverture réseau LoRaWAN, il peut transmettre environ 1 300 paquets de liaison montante (basé sur SF 10, 18,5 B). L’objectif de conception pour une batterie est de 2 ans maximum. L'utilisateur peut facilement changer la pile CR2032 pour la réutiliser.
Le LWL01 enverra périodiquement des données chaque jour ainsi qu'en cas de fuite d'eau. Il compte également les temps d'événement de fuite d'eau et calcule également la durée de la dernière fuite d'eau.
Chaque LWL01 est préchargé avec un ensemble de clés uniques pour l'enregistrement LoRaWAN, enregistrez ces clés sur le serveur LoRaWAN local et il se connectera automatiquement après la mise sous tension.
Caractéristiques
LoRaWAN v1.0.3 Classe A
Noyau LoRa SX1262
Détection de fuite d'eau
Alimenté par pile CR2032
Commandes AT pour modifier les paramètres
Liaison montante activée périodiquement et événement de fuite d'eau
Lien descendant pour modifier la configuration
Applications
Systèmes d'alarme et de sécurité sans fil
Domotique et domotique
Surveillance et contrôle industriels
Il s'agit d'une autre excellente interface série IIC/I²C/TWI/SPI. Comme les ressources en broches du contrôleur sont limitées, votre projet risque de ne pas pouvoir utiliser le blindage LCD normal après avoir été connecté à une certaine quantité de capteurs ou de carte SD. Cependant, avec ce module d'interface I²C, vous pourrez réaliser l'affichage des données via seulement 2 fils. Si vous avez déjà des appareils I²C dans votre projet, ce module LCD ne coûte en réalité aucune ressource supplémentaire. C'est fantastique pour un projet basé.
Adresse I²C : 0X20~0X27 (l'adresse d'origine est 0X20, vous pouvez la modifier vous-même)
Le rétroéclairage et le contraste sont ajustés par potentiomètre
Livré avec 2 interfaces IIC, qui peuvent être connectées par Dupont Line ou un câble dédié IIC Adresse I²C : 0x27 (Adresse I²C : 0X20~0X27 (l'adresse d'origine est 0X27, vous pouvez la modifier vous-même)
Caractéristiques
Compatible pour 1602 LCD
Tension d'alimentation : 5 V
Poids : 5g
Taille: 5,5 x 2,3 x 1,4 cm
35 Touch Develop & MicroPython Projects
The BBC micro:bit is a credit sized computer based on a highly popular and high performance ARM processor. The device is designed by a group of 29 partners for use in computer education in the UK and will be given free of charge to every secondary school student in the UK.
The device is based on the Cortex-M0 processor and it measures 4 x 5 cm. It includes several important sensors and modules such as an accelerometer, magnetometer, 25 LEDs, 2 programmable push-button switches, Bluetooth connectivity, micro USB socket, 5 ring type connectors, and a 23-pin edge connector. The device can be powered from its micro USB port by connecting it to a PC, or two external AAA type batteries can be used.
This book is about the use of the BBC micro:bit computer in practical projects. The BBC micro:bit computer can be programmed using several different programming languages, such as Microsoft Block Editor, Microsoft Touch Develop, MicroPython, and JavaScript.
The book makes a brief introduction to the Touch Develop programming language and the MicroPython programming language. It then gives 35 example working and tested projects using these language. Readers who learn to program in Touch Develop and MicroPython should find it very easy to program using the Block Editor or any other languages.
The following are given for each project:
Title of the project
Description of the project
Aim of the project
Touch Develop and MicroPython program listings
Complete program listings are given for each project. In addition, working principles of the projects are described briefly in each section. Readers are encouraged to go through the projects in the order given in the book.
A Hands-On Lab Course
This introduction to circuit design is unusual in several respects. First, it offers not just explanations, but a full course. Each of the twenty-five sessions begins with a discussion of a particular sort of circuit followed by the chance to try it out and see how it actually behaves. Accordingly, students understand the circuit's operation in a way that is deeper and much more satisfying than the manipulation of formulas. Second, it describes circuits that more traditional engineering introductions would postpone: on the third day, we build a radio receiver; on the fifth day, we build an operational amplifier from an array of transistors. The digital half of the course centers on applying microcontrollers, but gives exposure to Verilog, a powerful Hardware Description Language. Third, it proceeds at a rapid pace but requires no prior knowledge of electronics. Students gain intuitive understanding through immersion in good circuit design.
The course is intensive, teaching electronics in day-at-a-time practical doses so that students can learn in a hands-on way.
The integration of discussion of design with a chance to try the circuits means students learn quickly.
The course has been tried and tested, and proven successful through twenty-five years of teaching.
The book is practical: it avoids mathematics and mathematical arguments and even includes a complete list of parts needed in the laboratory exercises, including where and how to buy them.
The much-anticipated new edition of 'Learning the Art of Electronics' is here! It defines a hands-on course, inviting the reader to try out the many circuits that it describes. Several new labs (on amplifiers and automatic gain control) have been added to the analog part of the book, which also sees an expanded treatment of meters. Many labs now have online supplements. The digital sections have been rebuilt. An FPGA replaces the less-capable programmable logic devices, and a powerful ARM microcontroller replaces the 8051 previously used. The new microcontroller allows for more complex programming (in C) and more sophisticated applications, including a lunar lander, a voice recorder, and a lullaby jukebox. A new section explores using an Integrated Development Environment to compile, download, and debug programs. Substantial new lab exercises, and their associated teaching material, have been added, including a project reflecting this edition's greater emphasis on programmable logic.
Online resources including online chapters, teaching materials and video demonstrations can be found at: www.LearningTheArtOfElectronics.com
Downloads
Table of Contents
Cette alimentation de 48 W (8 V DC , 6 A) est conçue pour être utilisée avec le Raspberry Pi Build HAT.
Entrée : 110-240 V CA
Sortie : 8 V CC , 6 A
Câble : 1,5 m, 16 AWG
Construisez votre station météo idéale ou explorez les données environnementales avec le monde entier. Avec de nombreux projets pratiques pour Arduino, Raspberry Pi, NodeMCU, ESP32 et autres cartes de développement.
Les stations météo jouissent d’une grande popularité depuis des décennies. Tous les magazines d’électronique, qu’ils soient récents ou non, ont publié et publient régulièrement des articles sur la construction d’une station météo. Au fil des années, elles sont devenues de plus en plus sophistiquées et peuvent aujourd’hui être entièrement intégrées dans la maison intelligente. Ceci implique toutefois souvent une fidélité à un fabricant de produits de marque (coûteux) pour tous les composants.
Cependant, avec votre propre station météo, vous pouvez facilement suivre le rythme et même capturer des relevés que les appareils commerciaux ne peuvent pas réaliser. Le plaisir ne manque pas : vous développerez de manière ludique vos connaissances en électronique, en cartes de développement de microcontrôleurs modernes et en langages de programmation. Pour moins de dix euros, vous pouvez collecter des données environnementales initiales et étendre votre système au fur et à mesure que votre intérêt grandit.
Dans ce numéro
Sur la route du vent et de la météo
Écran météo OpenWeatherMap à affichage fluorescent
Les composés organiques volatils dans l‘air que nous respirons
Travailler avec les capteurs MQ : mesurer le monoxyde de carbone
Détecteur de CO2 avec connexion IdO vers ThingSpeak
Un arrosage automatique pour vos plantes
Un climat intérieur sain : la température et l‘humidité de l‘air sont importants
Thermomètre avec tubes Nixie
Une maison météo rétro pour toute la famille
Mesurez la pression atmosphérique et la température avec précision
Un détecteur de coups de soleil
Capteur maison pour la durée d‘ensoleillement
Le smartphone l‘indique : brouillard ou bonne visibilité ?
Détecter les tremblements de terre
Les niveaux des cours d‘eau et des réservoirs
Évaluer la valeur du pH de l’eau
Détecter les rayonnements radioactifs
Avec le GPS, vous savez où se trouve votre capteur
Enregistrer les fichiers journaux avec horodatage sur des cartes SD
LoRaWAN, The Things Network et ThingSpeak
Exploiter la passerelle LoRaWAN pour le TTN
Affichage géant à led avec prévisions météo
Le kit de suivi solaire est basé sur Arduino. Il se compose de 4 capteurs de lumière ambiante, de 2 servos DOF, d'un panneau solaire, etc., visant à convertir l'énergie lumineuse en énergie électronique et en appareils de charge.
Il dispose également d'un module de charge, d'un capteur de température et d'humidité, d'un capteur de lumière BH1750, d'un buzzer, d'un écran LCD1602, d'un module de boutons poussoirs, d'un module LED et autres, enrichissant grandement le tutoriel et rendant les projets plus intéressants.
Ce kit peut non seulement aider les enfants à mieux apprendre la programmation, mais également à acquérir des connaissances sur l'électronique, les machines, la logique de contrôle et l'informatique.
Caractéristiques
Fonctions multiples : suivi automatique de la lumière, lecture de la température, de l'humidité et de l'intensité lumineuse, contrôle par bouton, écran LCD1602 et charge par énergie solaire.
Facile à construire : insérez dans la prise Lego pour installer et pas besoin de fixer avec des vis et des écrous ou un circuit de soudure ; également facile à démonter.
Style novateur : adoptez des panneaux acryliques et des piliers en cuivre ; capteurs ou modules connectés à des cartes acryliques via des prises Lego ; les modules LCD1602 et les panneaux solaires y ajoutent des technologies.
Extension élevée : préservez les ports I²C, UART, SPI et les prises Lego, et étendez d'autres capteurs et modules.
Programmation de base : Programmer en langage C avec l'IDE Arduino.
Spécifications
Tension de travail
5 V
Tension d'entrée
3,7 V
Max. courant de sortie
1,5 A
Max. dissipation de puissance
7,5 W
Téléchargements
Wiki
OFFRE DE PÂQUES : Commandez dès maintenant le kit Geekworm KVM-A3 et recevez le livre numérique Raspberry Pi Full Stack (valeur de 35 €) gratuitement !
KVM signifie Keyboard, Video et Mouse. Il s'agit d'un puissant logiciel open source permettant l'accès à distance via Raspberry Pi. Ce kit KVM-A3 est conçu sur la base du Raspberry Pi 4.
Grâce à lui, vous pouvez allumer et éteindre votre ordinateur, le redémarrer, configurer l'UEFI/BIOS et même réinstaller le système d'exploitation à l'aide d'un CD-ROM virtuel ou d'une clé USB. Vous pouvez utiliser votre propre clavier et souris distants, ou laisser KVM simuler un clavier, une souris et un écran, présentés via un navigateur web comme si vous interagissiez directement avec le système distant. Il s'agit d'un véritable accès matériel, sans dépendance aux ports, protocoles ou services distants !
Caractéristiques
Spécialement conçu pour KVM (un IP-KVM DIY ouvert et abordable basé sur Raspberry Pi)
Compatible avec Raspberry Pi 4 (non inclus)
Entièrement compatible avec le système d'exploitation PiKVM V3
Contrôlez un serveur ou un ordinateur via un navigateur web
Capture HDMI Full HD basée sur la puce TC358743
Prise en charge du clavier et de la souris OTG ; Émulation de disque dur de stockage de masse
Horloge temps réel matérielle (RTC) avec emplacement pour pile bouton CR1220
Équipé d'un ventilateur pour dissiper la chaleur du Raspberry Pi
Dispose de relais statiques pour protéger les broches GPIO du Raspberry Pi des décharges électrostatiques et des décharges électrostatiques
Contrôle ATX via un connecteur RJ45 : allumage et extinction de la machine, réinitialisation et surveillance à distance de l'état du disque dur et des voyants d'alimentation
Connecteur SH1.0 10-broches réservé à la future prise en charge audio HDMI I²S
Embase 4 broches et entretoises réservées à l'écran OLED I²C
Inclus
Boîtier métallique KVM-A3 pour Raspberry Pi 4
Module HDMI vers CSI-2 X630 (pour la capture vidéo)
Carte d'extension X630-A3 (fournit Ethernet, refroidissement, RTC, alimentation, etc.)
Carte adaptateur X630-A5 (installée dans le boîtier du PC ; connecte la carte mère de l'ordinateur au câble du panneau d'E/S du boîtier)
Écran OLED 0,96 pouces (128 x 64 pixels)
Câble Ethernet (norme TIA/EIA-568.B ; sert également de câble de contrôle ATX)
Téléchargements
Wiki
PiKVM OS
Le Raspberry Pi AI HAT+ est une carte d'extension conçue pour le Raspberry Pi 5, dotée d'un accélérateur Hailo AI intégré. Ce module complémentaire offre une approche rentable, efficace et accessible pour intégrer des capacités d'IA hautes performances, avec des applications couvrant le contrôle des processus, la sécurité, la domotique et la robotique.
Disponible dans des modèles offrant 13 ou 26 téra-opérations par seconde (TOPS), l'AI HAT+ est basé sur les accélérateurs de réseaux neuronaux Hailo-8L et Hailo-8. Le 13 modèle TOPS prend en charge efficacement les réseaux de neurones pour des tâches telles que la détection d'objets, l'analyse sémantique et la segmentation des instances, l'estimation de la pose, et bien plus encore. Cette variante 26 TOPS s'adapte à des réseaux plus grands, permet un traitement plus rapide et est optimisée pour exécuter plusieurs réseaux simultanément.
L'AI HAT+ se connecte via l'interface PCIe Gen3 du Raspberry Pi 5. Lorsque le Raspberry Pi 5 exécute une version actuelle du système d'exploitation Raspberry Pi, il détecte automatiquement l'accélérateur Hailo intégré, rendant l'unité de traitement neuronal (NPU) disponible pour les tâches d'IA. De plus, les applications de caméra rpicam-apps incluses dans Raspberry Pi OS prennent en charge de manière transparente le module AI, en utilisant automatiquement le NPU pour les fonctions de post-traitement compatibles.
Inclus
Raspberry Pi AI HAT+ (26 TOPS)
Kit de matériel de montage (entretoises, vis)
Embase d'empilage GPIO 16 mm
Télechargements
Datasheet
BeagleY-AI est un ordinateur monocarte quad-core 64 bits puissant, open source et peu coûteux, équipé d'un GPU, d'un DSP et d'accélérateurs de vision/apprentissage profond, conçu pour les développeurs et les makers.
Les utilisateurs peuvent profiter des images logicielles Debian Linux fournies par BeagleBoard.org, qui incluent un environnement de développement intégré. Cela permet l'exécution transparente des applications d'IA sur un coprocesseur 4 TOPS dédié, tout en gérant simultanément les tâches d'E/S en temps réel avec un microcontrôleur de 800 MHz.
BeagleY-AI est conçu pour répondre aux besoins des développeurs professionnels et des environnements éducatifs. Il est abordable, facile à utiliser et open source, éliminant ainsi les obstacles à l’innovation. Les développeurs peuvent explorer des leçons approfondies ou pousser les applications pratiques jusqu'à leurs limites sans restriction.
Spécifications
Processeur
TI AM67 avec Arm Cortex-A53 quadricœur 64 bits, GPU, DSP, et accélérateurs de vision/deep learning
RAM
4 Go LPDDR4
Wi-Fi
Module BeagleBoard BM3301 basé sur TI CC3301 (Wi-Fi 802.11ax)
Bluetooth
Bluetooth basse consommation 5.4 (BLE)
USB
• 4x USB-A 3.0 prenant en charge un fonctionnement simultané à 5 Gbit/s • 1x USB-C 2.0 compatible avec les périphériques USB 2.0
Ethernet
Gigabit Ethernet, avec prise en charge PoE+ (nécessite un HAT PoE+ séparé)
Caméra/Écran
1x caméra/émetteur-récepteur d'affichage MIPI à 4 voies, 1x caméra MIPI à 4 voies
Afficher la sortie
1x écran HDMI, 1x écran OLDI
Horloge en temps réel (RTC)
Prend en charge une pile bouton externe pour conserver le temps de panne de courant. Il n'est renseigné que sur les échantillons EVT.
Déboguer l'UART
1x UART de débogage à 3 broches
Alimentation
Alimentation CC 5 V/5 A via USB-C, avec prise en charge Power Delivery
Bouton d'alimentation
On/Off inclus
Interface PCIe
Interface PCI-Express Gen3 x1 pour périphériques rapides (nécessite un HAT M.2 séparé ou un autre adaptateur)
Connecteur d'extension
Connecteur à 40 broches
Connecteur de ventilateur
1 connecteur de ventilateur à 4 broches, prend en charge le contrôle de vitesse PWM et la mesure de la vitesse
Stockage
Emplacement pour carte microSD, avec prise en charge du mode SDR104 haut débit
Tag Connecter
1x JTAG, 1x Tag Connect pour la programmation PMIC NVM
Téléchargements
Pinout
Documentation
Quick start
Software
Ce mini robot radar est un kit de bricolage passionnant et programmable qui combine créativité, technologie et apprentissage pratique. Le kit est parfait pour les passionnés de technologie, les créateurs et les étudiants désireux d'explorer la robotique et la programmation avec Arduino ou ESP8266.
Équipé d'un écran TFT de 2,8 pouces, il offre un retour visuel en temps réel en détectant les objets grâce à ses capteurs à ultrasons. Les cibles à moins de 1 m sont affichées sous forme de points rouges, tandis que les objets jusqu'à 4,5 m sont affichés sous forme numérique sur l'écran.
Spécifications
Unité de contrôle principale
Microcontrôleur ESP8266 + carte d'extension
Matériel
Construit à partir d'une feuille acrylique de haute qualité, garantissant une durabilité et un look élégant et moderne
Tension de fonctionnement
5 V/2 A
Température de fonctionnement
−40 à 85°C
Dimensions
145 x 95 x 90 mm
Installation
No solding and programming required
Inclus
1x Servomoteur
1x Module transducteur ultrasonique
1x Carte microcontrôleur
1x Module d'affichage de 2,8 pouces
1x Alimentation USB
1x Câble USB
Éléments mécaniques en acrylique
Tous les câbles, vis, écrous et entretoises nécessaires
La Raspberry Pi High Quality Camera est une caméra abordable de haute qualité de Raspberry Pi. Elle offre une résolution de 12 mégapixels et un capteur de 7,9 mm de diagonale pour des performances impressionnantes en basse lumière. La variante à monture M12 est conçue pour fonctionner avec la plupart des objectifs interchangeables M12, et la variante à monture CS est conçue pour fonctionner avec des objectifs interchangeables à monture CS et C (les objectifs à monture C nécessitent l'utilisation de l'adaptateur C-CS fourni avec cette variante). D'autres montures d'objectifs peuvent être pris en charge à l'aide d'adaptateurs d'objectifs tiers. La caméra de haute qualité est bien adaptée aux applications industrielles et grand public, y compris les caméras de sécurité, qui nécessitent les plus hauts niveaux de fidélité visuelle et/ou l'intégration d'optiques spécialisées. Elle est compatible avec tous les modèles de Raspberry Pi à partir du modèle B. Spécifications Capteur Capteur Sony IMX477R, rétro-éclairé Résolution 12,3 mégapixels Taille du capteur Diagonale du capteur de 7,9 mm Taille des pixels 1,55 x 1,55 μm Sortie RAW12/10/8, COMP8 Longueur de mise au point arrière de l'objectif 2,6-11,8 mm (variante à monture M12)12,5-22,4 mm (variante à monture CS) Format du capteur de l'objectif 1/2,3' (7,9 mm) ou plus grand Filtre de coupure IR Intégré Longueur du câble ruban 200 mm Montage sur trépied 1/4”-20 Inclus 1x Circuit imprimé portant un capteur Sony IMX477 1x Câble FPC pour connexion à un ordinateur Raspberry Pi 1x Monture d'objectif en aluminium fraisé avec support de trépied intégré 1x Adaptateur pour monture C à CS 3x Anneaux de verrouillage de l'objectif Requis Lentille à monture M12
Un dé rétro à l'âme néon
Les dés à LED sont courants, mais leur lumière est froide. Ce dé électronique néon affiche sa valeur grâce à la lueur chaleureuse des néons. Il est idéal pour jouer lors des froides et sombres soirées d'hiver. Les points du dé sont des néons et le générateur de nombres aléatoires est équipé de six néons pour indiquer son fonctionnement.
Même si le dé est équipé d'une alimentation 100 V intégrée, il est totalement sûr. Comme tous les produits Elektor Classic, le schéma du circuit est imprimé sur la face avant du dé, tandis qu'une explication du fonctionnement du circuit se trouve au dos.
Le dé néon est livré sous forme de kit de pièces traversantes faciles à souder. L'alimentation est assurée par une pile 9 V (non fournie).
Caractéristiques
Lumière vintage chaleureuse
Symboles du circuit Elektor Heritage
Essayé et testé par Elektor Labs
Projet éducatif et geek
Pièces traversantes uniquement
Inclus
Carte de Circuit Imprimé
Tous les Composants
Socle en Bois
Requis
Pile 9 V
Liste des composants
Résistances (THT, 150 V, 0.25 W)
R1, R2, R3, R4, R5, R6, R14 = 1 MΩ
R7, R8, R9, R10, R11, R12 = 18 kΩ
R13, R15, R16, R17, R18, R21, R23, R24, R25, R26, R28, R30, R33 = 100 kΩ
R32, R34 = 1.2 kΩ
R19, R20, R22, R27, R29 = 4.7 kΩ
R31 = 1 Ω
Condensateurs
C1, C2, C3, C4, C5, C6 = 470 nF, 50 V, 5 mm pitch
C7, C9, C11, C12 = 1 µF, 16 V, 2 mm pitch
C8 = 470 pF, 50 V, 5 mm pitch
C10 = 1 µF, 250 V, 2.5 mm pitch
Inductances
L1 = 470 µH
Semi-conducteurs
D1, D2, D3, D4, D5, D6, D7 = 1N4148
D8 = STPS1150
IC1 = NE555
IC2 = 74HC374
IC3 = MC34063
IC4 = 78L05
T1, T2, T3, T4, T5 = MPSA42
T6 = STQ2LN60K3-AP
Divers
K1 = Support pile PP3 9 V
NE1, NE2, NE3, NE4, NE5, NE6, NE7, NE8, NE9, NE10, NE11, NE12, NE13 = néon
S2 = interrupteur à glissière miniature
S1 = Bouton-poussoir (12 x 12 mm)
Le Moteur Mendocino AR O-8 est un moteur électrique à lévitation magnétique, alimenté par l'énergie solaire, présenté sous forme de kit.
La lumière devient mouvement
Le moteur solaire Mendocino semble flotter dans l'air. À première vue, on ne voit pas pourquoi le rotor tourne. C'est la magie du moteur.
La force de Lorentz est une force électrique très faible. Dans une salle de classe, elle est détectée par une oscillation du courant dans le champ magnétique. Avec le moteur Mendocino, nous avons réussi à développer une belle application qui utilise cette faible force pour la propulsion. Grâce à son aimant de base dissimulé, le moteur fascinera les observateurs qui ont un penchant pour la technique.
En plein soleil, le moteur peut atteindre une vitesse de 1 000 tr/min. Ce qui est encore plus impressionnant, c'est que même la faible lueur d'une ample bougie à thé (D = 6 cm avec une hauteur de flamme d'environ 2 cm) suffit à faire fonctionner le moteur. Le moteur n'est pas encore une source d'énergie alternative, même s'il est tentant. On peut supposer qu'il restera un modèle attrayant jusqu'à ce qu'un esprit ingénieux réfute cette hypothèse.
Dimensions
Toutes les cellules solaires 65 x 20 mm
Diamètre du miroir : 25 mm
Poids du rotor : environ 150 g
Longueur du modèle : 160 mm
Largeur du modèle : 85 mm
Hauteur du cadre : environ 85 mm
Matériau du cadre : acrylique noir
Tube en aluminium poli
Couleur du miroir : argent
Le manuel d'instructions du moteur Mendocino, facile à suivre, comprend plus de 70 illustrations. Il décrit une approche sûre et pratique de la construction, mais vous laisse aussi la liberté d'essayer vos solutions.
Kit partiellement pré-assemblé
Une partie du kit est préassemblée. Le collage de la vitre en verre borosilicate sur la surface acrylique nécessite des connaissances et des outils spécialisés. Nous ne voulons pas imposer cela à l'amateur. Par exemple, l'aimant de base est fixé au tube d'aluminium.
En tant qu'amateur, vous aurez besoin d'un peu de savoir-faire et d'outils appropriés : couteau à tapis, fer à souder et étain, colle chaude, pinces, et une pince ou une virole pour fixer l'aide à l'assemblage fournie. Le plaisir est garanti !
Programming the Finite State Machine with 8-Bit PICs in Assembly and C
Andrew Pratt provides a detailed introduction to programming PIC microcontrollers, as well as a thorough overview of the Finite State Machine (FSM) approach to programming. Most of the book uses assembly programming, but do not be deterred. The FSM gives a structure to a program, making it easy to plan, write, and modify. The last two chapters introduce programming in C, so you can make a direct comparison between the two techniques. The book references the relevant parts of the Microchip datasheet as familiarity with it is the best way to discover detailed information.
This book is aimed at Microsoft Windows and Linux users. To keep your costs to a minimum and to simplify the toolchain, specific applications are provided as a free download to enable you to use an FTDI serial lead as the programmer. The assembler used is the open-source "gpasm". All programming can be done in a text editor. There are detailed instructions on how to perform the necessary installations on Windows, Linux Debian, and derivatives such as Ubuntu and Fedora. For programming in C, Microchip's XC8 compiler is used from the command line. In addition to the programming applications, two serial read and serial write applications can be used for communicating with the PICs from a computer.
A voltmeter project including practical instructions on building a circuit board from scratch is included. All theory is covered beforehand, including how to do integer arithmetic in assembly.
Two PICs are covered: the PIC12F1822 and the PIC16F1823. Both can run at 32 MHz with an internal oscillator. You do not need to buy a factory-made development board and programmer. With relatively inexpensive parts including a serial lead, microcontroller, a few resistors, and LEDs, you can get started exploring embedded programming.
Links
Updated Programmer
Le Qwiic pHAT relie le bus I²C (GND, 3.3V, SDA et SCL) de votre Raspberry Pi à un ensemble de connecteurs Qwiic sur la HAT. Étant donné que le système Qwiic permet d’assembler des circuit imprimé avec des adresses différentes, vous pouvez empiler autant de capteurs que vous voulez pour créer une tour de détection ! Le Qwiic pHAT V2.0 dispose de quatre ports de connexion Qwiic (deux sur son côté et deux verticaux), tous sur le même bus I²C. Nous avons également veillé à ajouter une simple borne à vis 5V aux cartes d’alimentation qui peuvent avoir besoin de plus de 3.3V et d’un bouton d’usage général (avec la possibilité d’arrêter le Pi avec un script). Également mis à jour, les trous de montage trouvés sur la carte sont maintenant espacés pour tenir compte de la dimension typique de la carte Qwiic de 1,0' x 1,0'. Ce HAT est compatible avec tout Raspberry Pi qui utilise l’en-tête GPIO 2x20 standard et le NVIDIA Jetson Nano et Google Coral. Caractéristiques : 4 ports de connexion Qwiic 1 bornier à vis tolérant 5V 1 bouton Usage général Tête femelle 40 broches compatible HAT
L'adaptateur ESP-01 3,3-5 V est la solution idéale pour connecter un module ESP-01 ESP8266 à un système 5 V tel qu'Arduino Uno.
Caractéristiques
Module de connexion pour module WiFi ESP-01
Circuit régulateur de tension 3,3 V et conversion de niveau intégrée pour une utilisation facile du microcontrôleur 5 V avec module Wi-Fi ESP-01
Compatible avec Uno R3
4,5~5,5 V (régulateur LDO 3,3 V intégré)
Tension logique d'interface : compatible 3,3-5 V (décalage de niveau intégré)
Courant : 0-240 mA
Le Pico Cube est une carte d'extension LED 4x4x4 pour Raspberry Pi Pico avec une tension de fonctionnement de 5 VCC. Le Pico Cube, avec ses 64 LED monochromes de couleur bleue, est une façon amusante d'apprendre la programmation. Il est conçu pour réaliser des opérations incandescentes avec une faible consommation d'énergie, une conception robuste et une installation facile qui permettent aux utilisateurs, enfants et adultes, d'apprendre les effets des lumières LED avec différents motifs de couleurs via la combinaison de logiciel et de matériel, c'est-à-dire le Raspberry Pi Pico.
Caractéristiques
Header standard Raspberry Pi Pico à 40 broches
Communication basée sur GPIO
64 LED monochromes haute intensité
Accès individuel à chaque LED
Accès à chaque couche
Spécifications
Tension de fonctionnement : 5 V
Couleur : bleue
Communication : GPIO
LEDs : 64
Inclus
1x Pico Cube PCB de base
4x PCB de couche
8x PCB de pilier
2x connecteurs mâles Berg (1 x 20)
2x connecteurs femelles Berg (1 x 20)
70 LEDs
Remarque : Le Raspberry Pi Pico n'est pas inclus.
Téléchargements
GitHub
Wiki