Caractéristiques
Mesure de la distance par balayage omnidirectionnel à 360°.
Faible erreur de mesure, performances stables et haute précision
Niveau de protection IP65
Forte résistance aux interférences de la lumière ambiante
Moteur sans balais industrielle pour des performances stables.
La puissance du laser est conforme aux normes de sécurité des lasers de classe I
Fréquence de balayage adaptable de 5 à 12 Hz (possibilité de configuration)
Technologie de fusion photomagnétique pour réaliser une communication sans fil et une alimentation électrique sans fil
Fréquence de balayage jusqu'à 20 kHz (possibilité de configuration)
Applications
Navigation des robots et évitement des obstacles.
Automatisation industrielle
Enseignement et recherche sur les robots ROS
Sécurité régionale
Transport intelligent
Analyse environnementale et reconstruction 3D
Robot commercial /Robot aspirateur
Téléchargements
Fiche technique
manuel d'utilisation
Manuel de développement
SDK
TOOL
ROS
Nous avons incorporé des éléments essentiels de bricolage comme une mini planche à pain, des pilotes de moteur, des entrées ADC, un haut-parleur intégré, des entrées/sorties à usage général, des commutateurs et deux emplacements Breakout Garden afin que vous puissiez ajouter quelques baies. Nous avons également réussi à intégrer un écran LCD IPS dynamique de 240 x 240 avec quatre boutons tactiles afin que vous puissiez facilement surveiller et contrôler ce que fait votre projet. Le tout est enveloppé dans une belle plinthe robuste avec un encombrement agréablement compact qui n'impliquera pas autant de fils traînants que si vous expérimentiez une configuration de planche à pain traditionnelle.
Nos bibliothèques complètes MicroPython et C++ vous permettront de contrôler chaque aspect de la carte comme un maestro du numérique. C'est idéal pour les débutants et les utilisateurs avancés.
Caractéristiques
Base d'exploration de Pico
Haut-parleur piézo
Écran LCD IPS de 1,54' (240x240)
Quatre commutateurs contrôlables par l'utilisateur
Deux pilotes de moteur demi-pont (avec indicateur LED de surintensité)
En-têtes de broches GPIO et ADC faciles d'accès
Deux prises Breakout Garden I²C
Mini-planche à pain
Pieds en caoutchouc
Compatible avec Raspberry Pi Pico
Aucune soudure requise (tant que votre Pico est équipé de broches d'en-tête).
Dimensions : environ 117 x 63 x 20 mm (L x L x H, assemblé)
Bibliothèques C/C++ et MicroPython
Schématique
Donnez vie à vos projets avec cette perceuse de précision multifonctionnelle, conçue pour une large gamme d'applications, notamment la découpe, le perçage, la gravure, le polissage, et bien plus encore. Alimentée par un moteur robuste de 135 W, elle offre un contrôle de vitesse variable avec une plage impressionnante de 10000 à 32000 tr/min, garantissant des performances précises et constantes sur divers matériaux et tâches.
La perceuse est livrée dans une mallette de transport pratique avec un jeu d'accessoires complet de 162 pièces, offrant l'outil idéal pour chaque tâche et permettant des transitions fluides entre les différentes applications. Que vous soyez amateur ou professionnel, cet outil polyvalent offre la puissance, le contrôle et la fiabilité nécessaires pour un travail artisanal de haute qualité.
Polyvalence multifonctionnelle
Cette perceuse de précision tout-en-un est livrée avec 162 accessoires, ce qui la rend idéale pour une large gamme d'applications, de la découpe et du perçage à la gravure et au polissage. Passez facilement d'un projet à l'autre et soyez prêt à accomplir toutes vos tâches.
Performances puissantes
Dotée d'un moteur de 135 W et d'une plage de vitesse variable de 10000 à 32000 tr/min, cette perceuse offre une puissance constante et élevée. Elle garantit précision et efficacité, même pour les travaux les plus exigeants.
Ensemble complet d'accessoires
Que vous soyez un bricoleur ou un professionnel, les accessoires inclus vous offrent tout le nécessaire pour un travail impeccable. Profitez d'une flexibilité et d'un confort optimaux dans un seul ensemble complet.
Conception ergonomique et conviviale
Conçue pour le confort et la facilité d'utilisation, cette perceuse est dotée de commandes intuitives et d'une poignée ergonomique. Elle tient confortablement en main, permettant un travail précis, même en utilisation prolongée.
Conçue pour durer
Fabriquée à partir de matériaux de haute qualité, cette perceuse de précision est conçue pour durer et être fiable à long terme. Que vous soyez débutant ou bricoleur expérimenté, cet outil est conçu pour vous offrir des résultats exceptionnels, encore et encore. N'hésitez pas à me contacter si vous souhaitez une version plus technique, plus décontractée ou plus commerciale !
Inclus
1x Perceuse électrique (10000-32000 tr/min avec interrupteur marche/arrêt)
1x Arbre flexible (accessoire idéal pour un travail précis et détaillé ou pour les endroits difficiles d'accès)
1x Écrou de pince de serrage
4x Pinces de serrage
10x Pointes de meule diamantées
5x Disques à tronçonner en fibre de verre
62x Disques à tronçonner
1x Disque de polissage en caoutchouc
2x tambours de ponçage
22x Bandes abrasives
1x Roue à lamelles abrasives
12x Pierres à polir
9x Brosses métalliques
7x Feutres de polissage
1x Meule en carbure de silicium
10x Meules disques
4x Mandrins
2x Pâte à polir
6x Forets (2x 1,5 mm, 2x 2,3 mm, 2x 3,1 mm)
1x Outil
Téléchargements
Manual
32 new Projects, Practical Examples and Exercises with the Elektor Arduino Nano MCCAB Training Board
Electronics and microcontroller technology offer the opportunity to be creative. This practical microcontroller course provides you with the chance to bring your own Arduino projects and experience such moments of success. Ideally, everything works as you imagined when you switch it on for the first time. In practice, however, things rarely work as expected. At that point, you need knowledge to efficiently search for and find the reason for the malfunction.
In this book for advanced users, we delve deep into the world of microcontrollers and the Arduino IDE to learn new procedures and details, enabling you to successfully tackle and solve even more challenging situations.
With this book, the author gives the reader the necessary tools to create projects independently and also to be able to find errors quickly. Instead of just offering ready-made solutions, he explains the background, the hardware used, and any tools required. He sets tasks in which the reader contributes their own creativity and writes the Arduino sketch themselves.
If you don’t have a good idea and get stuck, there is, of course, a suggested solution for every project and every task, along with the corresponding software, which is commented on and explained in detail in the book.
This practical course will teach you more about the inner workings of the Arduino Nano and its microcontroller. You will get to know hardware modules that you can use to realize new and interesting projects. You will familiarize yourself with software methods such as ‘state machines,’ which can often be used to solve problems more easily and clearly.
The numerous practical projects and exercise sketches are once again realized on the Arduino Nano MCCAB Training Board, which you may already be familiar with from the course book ‘Microcontrollers Hands-on Course for Arduino Starters’, and which contains all the hardware peripherals and operating elements we need for the input/output operations of our sketches.
Readers who do not yet own the Arduino Nano MCCAB Training Board can purchase the required hardware separately, or alternatively, build it on a breadboard.
Ce SSD NVMe M.2 2242 (128 Go) est livré préinstallé avec le Raspberry Pi OS pour une utilisation immédiate avec le Raspberry Pi 5 M.2 HAT+.
Caractéristiques
Facteur de forme : SSD NVMe M.2 2242 M-Key
Préchargé avec le système d'exploitation Raspberry Pi
Haut niveau de capacité à supporter les chocs, les vibrations et les températures élevées
Prise en charge de SMART TRIM
Interface PCIe : PCIe Gen3 x2
Conformité : NVMe 1.3, PCI Express Base 3.1
Capacité : 128 Go
Vitesse :
Lecture : jusqu'à 1700 Mo/s
Écriture : jusqu'à 600 Mo/s
Choc : 1500 G/0,5 ms
Température de fonctionnement : 0°C à 70°C
Jusqu'à 30 fois plus rapide qu'un disque dur classique
Améliore les performances d'écriture en rafale, ce qui le rend idéal pour les charges de travail informatiques classiques
Démarrage, arrêt, chargement des applications et réponse plus rapides pour Raspberry Pi
Téléchargements
Datasheet
HyperPixel 4.0 Square possède toutes les fonctionnalités exceptionnelles de notre HyperPixel 4.0 standard : un écran IPS net et brillant avec écran tactile et une interface DPI haute vitesse ; il est tout simplement plus carré !
Cette version carrée d'HyperPixel 4.0 est idéale pour les interfaces et panneaux de contrôle personnalisés, et fonctionne très bien pour les jeux Pico-8. Tout est pré-soudé et prêt à l'emploi, il suffit de l'insérer sur votre RPi, d'exécuter notre programme d'installation, et c'est parti !
Caractéristiques
Interface DPI haute vitesse
Écran IPS 4,0' (grand angle de vision, 160°) (72 x 72 mm)
720 x 720 pixels (~ 254 PPI)
Couleur 18 bits (262 144 couleurs)
Fréquence d'images de 60 FPS
Écran tactile capacitif en option
Connecteur femelle à 40 broches inclus pour augmenter la hauteur des Raspberry Pi B+, 2, 3, 3B+ et 4
Entretoises incluses pour attacher solidement à votre RPi
Compatible avec tous les modèles Raspberry Pi à connecteur 40 broches
Installateur sur une seule ligne
HyperPixel 4.0 Square utilise une interface DPI haute vitesse, lui permettant de déplacer 5 fois plus de données de pixels que l'interface SPI habituelle que ces petits écrans RPi utilisent normalement. Il a une fréquence d'images de 60 FPS et une résolution d'environ 254 pixels par pouce (720 x 720 px) sur son écran de 4,0 pouces. L'écran peut afficher 18 bits de couleur (262 144 couleurs).
Cette version Touch dispose d'un écran tactile capacitif qui est plus sensible et réactif au toucher qu'un écran tactile résistif, et elle est capable de multi-touch !
Attention : lors de l'installation de HyperPixel 4.0 Square sur votre RPi, veillez à ne pas appuyer sur la surface de l'écran ! Tenez la carte par ses bords et remuez-la pour l'accoupler à l'en-tête étendu (ou à l'en-tête GPIO). Veillez également à ne pas tirer sur les bords de l'écran en verre lorsque vous retirez votre HyperPixel. Il fonctionnera avec n'importe quelle version à 40 broches du RPi, y compris le RPi Zero et le RPi Zero W. Si vous l'utilisez avec un RPi plus grand, utilisez l'en-tête supplémentaire à 40 broches inclus pour l'augmenter jusqu'à la hauteur requise. . Si vous utilisez un Zero ou Zero W, insérez-le simplement directement sur le GPIO.
Le kit d'entretoise inclus vous permet de monter votre HyperPixel 4.0 Square en toute sécurité sur votre RPi. Vissez-les simplement dans les poteaux situés sous le PCB carré HyperPixel 4.0, puis fixez-les avec des vis à travers les trous de montage de votre RPi.
Téléchargements
GitHub
NRF24L01 est une puce émetteur-récepteur monolithique universelle en bande ISM fonctionnant dans la bande 2,4-2,5 GHz. Caractéristiques
Émetteur-récepteur sans fil comprenant : Générateur de fréquence, type amélioré, SchockBurstTM, contrôleur de mode, amplificateur de puissance, amplificateur à cristal, modulateur, démodulateur
La sélection du canal de puissance de sortie et les paramètres du protocole peuvent être définis avec une consommation de courant extrêmement faible, via l'interface SPI.
En mode de transmission, la puissance de transmission est de 6 dBm, le courant est de 9,0 mA, le courant du mode accepté est de 12,3 mA, la consommation de courant du mode mise hors tension et du mode veille est inférieure
Antenne 2,4 GHz intégrée, prend en charge jusqu'à six canaux de réception de données
Taille : 15 x 29 mm (antenne comprise)
Ce qui se passe en électronique est par définition invisible à l'oeil nu. L'instrument qui permet précisément de rendre visibles les signaux électriques, celui par le truchement duquel les effets de l'électronique se manifestent à nous, c'est l'oscilloscope.
Hélas, quand on commence à faire de l'électronique, c'est souvent sans oscilloscope. Et l'on en est réduit à tâtonner, aussi bien physiquement que mentalement. Le jour où l'on goûte à la visualisation des signaux sur un écran, c'est une révélation. Plus personne ne souhaite se priver de cet enchantement. Pas de retour en arrière. En électronique, si l'on veut progresser dans le plaisir et dans la compréhension, il faut un oscillo.
Commence alors une période d'interrogation : comment choisir ? Et à peine cette question-là aura-t-elle trouvé sa réponse, il en viendra une ribambelle d'autres que l'on peut résumer en une seule : comment se servir de l'oscilloscope de telle sorte que ce qu'il affiche corresponde bien à la réalité des signaux ?
Dans ce livre, Rémy Mallard, répond clairement à ces questions. Il donne aussi de nombreuses informations pour aider son lecteur à élucider lui-même de nouveaux mystères qui ne manqueront pas de surgir. Ceux qui le connaissent déjà comme l'auteur d'un livre sur l'électronique dont le titre est un programme à lui tout seul : L'électronique pour les débutants qui sèchent les cours mais soudent sans se brûler les doigts, ainsi que d'un livre d'initiation à la programmation des microcontrôleurs PIC, savent qu'ils trouveront ici un ouvrage utile, qu'ils rouvriront souvent.
Program and build Arduino-based ham station utilities, tools, and instruments
In addition to a detailed introduction to the exciting world of the Arduino microcontroller and its many variants, this book introduces you to the shields, modules, and components you can connect to the Arduino. Many of these components are discussed in detail and used in the projects included in this book to help you understand how these components can be incorporated into your own Arduino projects. Emphasis has been placed on designing and creating a wide range of amateur radio-related projects that can easily be built in just a few days.
This book is written for ham radio operators and Arduino enthusiasts of all skill levels, and includes discussions about the tools, construction methods, and troubleshooting techniques used in creating amateur radio-related Arduino projects. This book teaches you how to create feature-rich Arduino-based projects, with the goal of helping you to advance beyond this book, and design and build your own ham radio Arduino projects.
In addition, this book describes in detail the design, construction, programming, and operation of the following projects:
CW Beacon and Foxhunt Keyer
Mini Weather Station
RF Probe with LED Bar Graph
DTMF Tone Encoder
DTMF Tone Decoder
Waveform Generator
Auto Power On/Off
Bluetooth CW Keyer
Station Power Monitor
AC Current Monitor
This book assumes a basic knowledge of electronics and circuit construction. Basic knowledge of how to program the Arduino using its IDE will also be beneficial.
This PiCAN2 Duo board provides two independent CAN-Bus channels for the Raspberry Pi 4. It uses the Microchip MCP2515 CAN controller with MCP2551 CAN transceiver. Connections are made via 4-way screw terminal. This board has a 5 V/3 A SMPS that can power the Raspberry Pi is well via the screw terminal.p
Easy to install SocketCAN driver. Programming can be done in C or Python.
Caractéristiques
CAN v2.0B at 1 Mb/s
High speed SPI Interface (10 MHz)
Standard and extended data and remote frames
CAN connection screw terminal
120 Ω terminator ready
Serial LCD ready
LED indicator
Four fixing holes, comply with Pi Hat standard
SocketCAN driver, appears as can0 and can1 to application
Interrupt RX on GPIO25 and GPIO24
5 V/3 A SMPS to power Raspberry Pi and accessories from screw terminal
Reverse polarity protection
High efficiency switch mode design
7-24 V input range
Téléchargements
User guide
Schematic Rev D
Writing your own program in Python
Python3 examples in Github
Un HAT Raspberry Pi destinée pour des applications météorologiques et qui permet de facilement connecter des capteurs.
Weather HAT est une solution tout-en-un pour connecter des capteurs climatiques et environnementaux à un Raspberry Pi. Il dispose d'un écran LCD lumineux de 1,45 pouces et de quatre boutons pour les entrées. Les capteurs embarqués peuvent mesurer la température, l'humidité, la pression et la lumière. Les puissants connecteurs RJ11 vous permettront de fixer facilement des capteurs de vent et de pluie. Il fonctionnera avec n'importe quel Raspberry Pi doté d'un connecteurs à 40 broches.
Vous pourriez l'installer à l'extérieur dans une enceinte étanche adaptée et s'y connecter sans fil - en enregistrant les données localement ou en les acheminant vers Weather Underground, un courtier MQTT ou un service cloud comme Adafruit IO. Sinon, vous pourriez loger votre Pi météo à l'intérieur et faire passer des fils vers vos capteurs météorologiques à l'extérieur - en utilisant le joli écran pour afficher les résultats.
Caractéristiques
Écran LCD IPS 1,54 pouces (240 x 240)
Quatre interrupteurs contrôlables par l'utilisateur.
Capteur de température, pression, humidité BME280 (fiche technique)
Capteur de lumière et de proximité LTR-559 (fiche technique)
microcontrôleur Nuvoton MS51 avec CAN 12 bits intégré (fiche technique)
Connecteurs RJ11 pour connecter les capteurs de vent et de pluie (en option).
Carte au format HAT
Complètement assemblé
Compatible avec tous les modèles de Raspberry Pi avec connecteur à 40 broches.
Téléchargements
Bibliothèque Python
Schéma
Inclus
Weather HAT
2x 10 mm standoffs
Le module LR1302 est un module passerelle LoRaWAN de nouvelle génération. Son facteur de forme est basé sur le mini-PCIe, et il a une faible consommation d'énergie et de hautes performances. Équipé de la puce de bande de base LoRaWAN SX1302 de Semtech Network, le module de passerelle LR1302 offre diverses fonctions de passerelle avec potentiellement la capacité de transmission sans fil à longue distance. Par rapport aux puces LoRa précédentes SX1301 et SX1308, la puce SX1302 a une sensibilité plus élevée, une consommation d'énergie plus faible et une température de fonctionnement plus basse. Elle prend en charge la transmission de données à 8 canaux, améliore l'efficacité et la capacité de communication et prend en charge les connexions et la transmission de données à un plus grand nombre d'appareils.Elle dispose de deux interfaces d'antenne, une pour l'envoi et la réception de signaux LoRa et une interface U.FL (IPEX) pour une transmission indépendante. Il est également doté d'un blindage métallique pour protéger contre les interférences externes, et pour fournir un environnement de communication fiable.Conçu spécifiquement pour l'IoT, le LR1302 convient à une variété d'applications IoT. Qu'il soit utilisé dans les villes intelligentes, l'agriculture, l'automatisation industrielle ou d'autres domaines, le module LR1302 peut fournir des connexions fiables et une transmission de données efficace.
Caractéristiques
Utilise la puce LoRa de bande de base Semtech SX1302 avec une consommation d'énergie extrêmement faible et d'excellentes performances
Le facteur de forme Mini-PCIe et la conception compacte facilitent l'intégration dans différents dispositifs de passerelle et conviennent aux applications à espace limité, offrant ainsi des options de déploiement flexibles.
Prend en charge la transmission de données à 8 canaux, offre une efficacité et une capacité de communication plus efficaces
La température de fonctionnement ultra basse élimine le besoin de refroidissement supplémentaire et réduit la taille de la passerelle LoRaWAN
Utilise l'avant SX1250 TX/RX avec une sensibilité jusqu'à -139 dBm@SF12 ; Puissance d'émission jusqu'à 26 dBm à 3,3 V
Caractéristiques
Fréquence
863-870 MHz (EU868)
Jeu de puces
Puce Semtech SX1302
Sensibilité
-125 dBm à 125K/SF7 -139 dBm à 125K/SF12
Puissance d'émission
26 dBm (avec alimentation 3,3 V)
Bande passante
125/250/500 kHz
Canal
8 canaux
LED
Puissance : Vert Configuration : Ed Émission : Vert Récepteur : bleu
Facteur de forme
Mini PCIe, doigt d'or 52 broches
Consommation électrique (version SPI)
Veille : 7,5 mA Puissance maximale d'émission : 415 mA Réception : 40 mA
Consommation électrique (version USB)
Veille : 20 mA Puissance maximale d'émission : 425 mA Réception : 53 mA
LBT (écouter avant de parler)
Soutien
Connecteur d'antenne
U.FL
Température de fonctionnement
-40 à 85°C
Dimensions (L x L)
30x50.95mm
Note
Le module de passerelle LoRaWAN LR1302 n'est pas inclus.
Téléchargements
Wiki
Fiche technique SX1302
Diagramme schématique
Learn programming for Alexa devices, extend it to smart home devices and control the Raspberry Pi
The book is split into two parts: the first part covers creating Alexa skills and the second part, designing Internet of Things and Smart Home devices using a Raspberry Pi.
The first chapters describe the process of Alexa communication, opening an Amazon account and creating a skill for free. The operation of an Alexa skill and terminology such as utterances, intents, slots, and conversations are explained. Debugging your code, saving user data between sessions, S3 data storage and Dynamo DB database are discussed.
In-skill purchasing, enabling users to buy items for your skill as well as certification and publication is outlined. Creating skills using AWS Lambda and ASK CLI is covered, along with the Visual Studio code editor and local debugging. Also covered is the process of designing skills for visual displays and interactive touch designs using Alexa Presentation Language.
The second half of the book starts by creating a Raspberry Pi IoT 'thing' to control a robot from your Alexa device. This covers security issues and methods of sending and receiving MQTT messages between an Alexa device and the Raspberry Pi.
Creating a smart home device is described including forming a security profile, linking with Amazon, and writing a Lambda function that gets triggered by an Alexa skill. Device discovery and on/off control is demonstrated.
Next, readers discover how to control a smart home Raspberry Pi display from an Alexa skill using Simple Queue Service (SQS) messaging to switch the display on and off or change the color.
A node-RED design is discussed from the basic user interface right up to configuring MQTT nodes. MQTT messages sent from a user are displayed on a Raspberry Pi.
A chapter discusses sending a proactive notification such as a weather alert from a Raspberry Pi to an Alexa device. The book concludes by explaining how to create Raspberry Pi as a stand-alone Alexa device.
Opera Cake est une carte auxiliaire de commutation d’antenne pour HackRF One qui peut être commutée manuellement ou configurée avec un logiciel en ligne de commande pour une commutation de port automatisée basée sur la fréquence ou le temps. La carte possède deux ports primaires, chacun connecté à l’un des huit ports secondaires, et est optimisée pour être utilisée comme une paire de commutateurs 1x4 ou comme un seul commutateur 1x8. Sa gamme de fréquences recommandée est de 1 MHz à 4 GHz.
Lors de l’utilisation du HackRF One pour la transmission, Opera Cake peut automatiquement acheminer sa sortie vers les antennes de transmission appropriées, ainsi que vers tout filtre externe, amplificateur, etc. Il n’est pas nécessaire de modifier le logiciel SDR existant, mais le contrôle total depuis l’hôte est possible.
Opera Cake améliore également l’utilisation du HackRF One en tant qu’analyseur de spectre sur toute sa gamme de fréquences de fonctionnement de 1 MHz à 4 GHz. La commutation d’antenne est possible avec la fonction hackrf_sweep existante, qui peut balayer toute la plage de réglage en moins d’une seconde. La commutation automatique à mi-balayage permet l’utilisation de plusieurs antennes lors du balayage d’une large gamme de fréquences.
Téléchargements
Documentation
GitHub
Le clavier-plus-hub est officiel avec le Raspberry Pi comme clavier standard FR avec trois ports USB 2.0 type A supplémentaire pour les périphériques externes. Le clavier est disponible avec différentes options de langue/paiements, comme détaillé ci-dessous.
Clavier FR (AZERTY)
Trois ports USB 2.0 type A pour périphériques externes
Détection automatique de la langue du clavier
Câble USB type A versus micro USB type B incluant la connexion avec un adaptateur compatible
Conception ergonomique pour une utilisation confortable
Compatible avec les produits Raspberry Pi
Caractéristiques
Matériau de la puce NFC : PET + antenne de gravure
Puce : NTAG216 (compatible avec tous les téléphones NFC)
Fréquence : 13,56 MHz (haute fréquence)
Temps de lecture : 1 - 2 ms
Capacité de stockage : 888 octets
Temps de lecture et d'écriture : > 100 000 fois
Distance de lecture : 0 - 5 mm
Conservation des données : > 10 ans
Taille de la puce NFC : Diamètre 30 mm
Sans contact, sans friction, le taux de défaillance est faible, faibles coûts de maintenance
Taux de lecture, vitesse de vérification, ce qui peut effectivement gagner du temps et améliorer l'efficacité
Étanche, anti-poussière, anti-vibration
Aucune alimentation n'est fournie avec une antenne, une logique de contrôle de cryptage intégrée et un circuit logique de communication
Inclus
1x autocollants NFC (kit 6 couleurs)
PC USB Logic Analyzers with Arduino, Raspberry Pi, and Co.
Step-by-step instructions guide you through the analysis of modern protocols such as I²C, SPI, UART, RS-232, NeoPixel, WS28xx, HD44780 and 1-Wire protocols. With the help of numerous experimental circuits based on the Raspberry Pi Pico, Arduino Uno and the Bus Pirate, you will learn the practical application of popular USB logic analyzers.
All the experimental circuits presented in this book have been fully tested and are fully functional. The necessary program listings are included – no special programming or electronics knowledge is required for these circuits. The programming languages used are MicroPython and C along with the development environments Thonny and Arduino IDE.
This book uses several models of flexible and widely available USB logic analyzers and shows the strengths and weaknesses of each price range.
You will learn about the criteria that matter for your work and be able to find the right device for you.
Whether Arduino, Raspberry Pi or Raspberry Pi Pico, the example circuits shown allow you to get started quickly with protocol analysis and can also serve as a basis for your own experiments.
After reading this book, you will be familiar with all the important terms and contexts, conduct your own experiments, analyze protocols independently, culminating in a comprehensive knowledge set of digital signals and protocols.
Le module Caméra Raspberry Pi 3 est un appareil photo compact de Raspberry Pi. Il est doté d'un capteur IMX708 de 12 mégapixels avec HDR et d'un autofocus à détection de phase. Le Camera Module 3 est disponible en version standard et en version grand angle, toutes deux avec ou sans filtre infrarouge. Le Camera Module 3 peut être utilisé pour prendre des vidéos full HD ainsi que des photos, et dispose d'un mode HDR jusqu'à 3 mégapixels. Son fonctionnement est entièrement pris en charge par la bibliothèque libcamera, y compris la fonction d'autofocus rapide de Camera Module 3 : cela le rend facile à utiliser pour les débutants, tout en offrant beaucoup pour les utilisateurs avancés. Camera Module 3 est compatible avec tous les ordinateurs Raspberry Pi. Toutes les variantes du module caméra Raspberry Pi 3 possèdent : Capteur d'image CMOS 12 mégapixels rétro-éclairé et empilé (Sony IMX708) Rapport signal/bruit (SNR) élevé Correction dynamique des pixels défectueux (DPC) intégrée en 2D Autofocus à détection de phase (PDAF) pour un autofocus rapide Fonction de re-mosaïque QBC Mode HDR (jusqu'à 3 mégapixels en sortie) Sortie de données série CSI-2 Communication série 2 fils (supporte le mode rapide I²C et le mode rapide plus) Contrôle série 2 fils du mécanisme de mise au point Caractéristiques Capteur Sony IMX708 Résolution 11,9 MP Taille du capteur Diagonale du capteur 7,4 mm Taille de pixel 1,4 x 1,4 µm Horizontal/vertical 4608 x 2592 pixels Modes vidéo communs 1080p50, 720p100, 480p120 Sortie RAW10 Filtre anti-IR Intégré dans les variantes standard ; non présent dans les variantes NoIR Système autofocus Autofocus avec détection de phase Longueur du câble ruban 200 mm Connecteur de câble 15 x 1 mm FPC Dimensions 25 x 24 x 11,5 mm (hauteur 12,4 mm) Variantes du module caméra Raspberry Pi 3 Module Caméra 3 Module Caméra 3 NoIR Module Caméra 3 Wide Module Caméra 3 Wide NoIR Plage de mise au point 10 cm - ∞ 10 cm - ∞ 5 cm - ∞ 5 cm - ∞ Longueur focale 4,74 mm 4,74 mm 2,75 mm 2,75 mm Champ de vision diagonal 75 degrés 75 degrés 120 degrés 120 degrés Champ de vision horizontal 66 degrés 66 degrés 102 degrés 102 degrés Champ de vision vertical 41 degrés 41 degrés 67 degrés 67 degrés Rapport focal (F-stop) F1.8 F1.8 F2.2 F2.2 Sensible aux infrarouges Non Oui Non Oui Téléchargements GitHub Documentation
Remarque : NodeMCU est le nom d'un micrologiciel et d'une carte. NodeMCU est une plateforme IoT open source, dont le firmware fonctionne sur le SoC Wi-Fi ESP8266 d'Espressif, basé sur le SDK ESP8266 nonOS . Son matériel est basé sur le module ESP-12. Le langage de script est Lua qui permet d'utiliser de nombreux projets open source comme lua-cjson et spiffs.
Caractéristiques
Module Wi-Fi – Module ESP-12E similaire au module ESP-12 mais avec 6 GPIO supplémentaires.
USB – port micro USB pour l’alimentation, la programmation et le débogage
En-têtes – 2 connecteurs 2,54 mm à 15 broches avec accès aux GPIO, SPI, UART, ADC et broches d'alimentation
Boutons de réinitialisation et de flash
Alimentation : 5 V via port micro USB
Dimensions : 49 x 24,5 x 13 mm
Ce microscope polyvalent couvre une large plage de grossissement (60-240x, 18-720x, 1560-2040x) avec 3 objectifs. Avec ce microscope numérique, vous pouvez examiner des plantes, des insectes, des pierres précieuses et des pièces de monnaie, ou effectuer des travaux électroniques tels que des réparations ou la fabrication de circuits imprimés.
Spécifications
AD246S-M
AD249S-M
Grossissement
Objectif A
18-720
18-720
Plage de mise au point
12-320 mm
12-320 mm
Objectif D
1800-2040
1800-2040
Plage de mise au point
4-5 mm
4-5 mm
Objectif L
60-240
60-240
Plage de mise au point
90-300 mm
90-300 mm
Taille de l'écran
7 pouces (17,8 cm)
10 pouces (25,7 cm)
Résolution vidéo (max.)
UHD 2880x2160 (24ips)
UHD 2880x2160 (24ips)
Format vidéo
MP4
MP4
Format de photo
JPG
JPG
Résolution photo
5600x2400 (avec interpolation)
5600x2400 (avec interpolation)
Taux de trame
Max. 120ips
Max. 120ips
Sortie HDMI
Oui (prise en charge de l'affichage double écran)
Oui (seul l'écran HDMI affiche)
Sortie PC
Oui
Oui
Taille du support
20 x 18 x 30 cm
20 x 18 x 30 cm
Inclus
1x Microscope num érique Andonstar AD246S-M
3x Objectifs (A, D et L)
1x Porte-objectif
1x Carte microSD de 32 Go
1x Câble USB
1x Câble de commutation
1x Câble HDMI
1x Télécommande
5x Lames préparées
1x Boîte d'observation
1x Pincettes
1x Manuel
Téléchargements
Manuel
Logiciel
Le multitâche et le multitraitement sont devenus un sujet très important dans les systèmes basés sur des microcontrôleurs, notamment dans les applications complexes d'automatisation commerciale, domestique et industrielle. À mesure que la complexité des projets augmente, davantage de fonctionnalités sont exigées des projets. De tels projets nécessitent l'utilisation de plusieurs tâches interdépendantes exécutées sur le même système et partageant les ressources disponibles, telles que le processeur, la mémoire et les ports d'entrée-sortie. En conséquence, l’importance des opérations multitâches dans les applications basées sur des microcontrôleurs n’a cessé de croître au cours des dernières années. De nombreux projets d'automatisation complexes utilisent désormais une forme de noyau multitâche.
Ce livre est basé sur des projets et son objectif principal est d'enseigner les fonctionnalités de base du multitâche à l'aide du langage de programmation Python 3 sur Raspberry Pi. De nombreux projets entièrement testés sont fournis dans le livre utilisant les modules multitâches de Python. Chaque projet est décrit de manière complète et détaillée. Des listes complètes de programmes sont fournies pour chaque projet. Les lecteurs doivent pouvoir utiliser les projets tels quels ou les modifier en fonction de leurs propres besoins.
Les modules multitâches Python suivants ont été décrits et utilisés dans les projets :
Fourchette
Fil
Enfilage
Sous-processus
Multitraitement
Le livre comprend des projets multitâches simples tels que le contrôle indépendant de plusieurs LED, jusqu'à des projets multitâches plus complexes tels que le contrôle de la température marche/arrêt, le contrôle des feux de circulation, un compteur d'événements LED à 2 et 4 chiffres à 7 segments, une minuterie de réaction, un moteur pas à pas. contrôle, projets basés sur le clavier, contrôleur de parking et bien d'autres. Les concepts fondamentaux du multitâche tels que la synchronisation des processus, la communication des processus et les techniques de partage de mémoire ont été décrits dans des projets concernant les indicateurs d'événements, les files d'attente, les sémaphores, les valeurs, etc.
Guide de conception pour la conception de filtres EMI, les circuits SMPS et RF
Le livre se concentre sur la sélection de composants, de circuits et de recommandations de configuration pour un large éventail de composants magnétiques, en gardant toujours à l'esprit un point de vue CEM.
Contenu
Principes de base
Les lois et fondements les plus importants des composants inductifs, les schémas de circuits équivalents et les modèles de simulation donnent au lecteur une connaissance de base en électronique.
Composants Ce chapitre présente les composants inductifs, leurs propriétés particulières et leurs domaines d'utilisation. Tous les composants pertinents sont expliqués, des composants CEM et inductances aux transformateurs, composants RF, composants de protection de circuit, matériaux de blindage et condensateurs.
Applications
Dans ce chapitre, le lecteur trouvera un aperçu complet du principe des circuits de filtrage, des circuits et de nombreuses applications industrielles qui sont expliqués en détail à partir d'exemples originaux.
Caractéristiques ATmega32U4 avec le bootloader Arduino Leonardo Contrôleur de bus CAN MCP2515 et émetteur-récepteur de bus CAN MCP2551 Brochage standard OBD-II et CAN sélectionnable au niveau du connecteur sub-D Compatible avec l'IDE Arduino Inclus CANBed PCBA Connecteur Sub-D Connecteur 4PIN 2 connecteurs 4PIN 2.0 1 connecteur 9x2 2,54 1 connecteur 3x2 2.54 Paramètre Valeur Microcontrôleur ATmega32U4(avec bootloader Arduino Leonardo) Vitesse d'horloge 16 MHz Mémoire flash 32 Ko SRAM 2,5 Ko EEPROM 1 KB 9 V - 28 V Tension de fonctionnement(MicroUSB) 5 V Interface d'entrée sub-D