De quel type d'appareil s'agit-il ? Et que pouvez-vous en faire ? Eh bien, cet appareil ne nécessite pas beaucoup d'explications.
L'appareil le plus inutile au monde !
La boîte Inutile ne sert littéralement à rien, mais en même temps elle est tellement hilarante qu'on a envie de la montrer à tout le monde. Ce kit vous donne la possibilité de construire votre propre Useless Box et d'augmenter vos connaissances techniques. En fin de compte, cet appareil s’éteindra à chaque fois qu’il sera allumé et remplira ainsi une fonction totalement inutile.
Toujours curieux ? Alors regardez la vidéo ci-dessous. Un incontournable pour chaque bureau : à la maison ou au travail !
Ce kit d'arbre de Noël basé sur Arduino contient 36 LED RVB de 8 mm (WS2812D-F8) programmables numériquement et adressables individuellement pour créer des effets lumineux impressionnants. Les LED peuvent être contrôlées de l'extérieur ou par un Arduino Nano ESP32.
Caractéristiques
36 LED RVB numériques (adressables par NeoPixel)
Convient à tout système de microcontrôleur
Correspondance parfaite avec Arduino Nano ESP32 (non inclus)
PCB de haute qualité : 5x circulaires, 1x carrés
Assemblage facile et amusant avec des outils populaires
Manuel de construction détaillé
Dimensions: 136 x 136 x 175 mm
Inclus
PCB (136 x 136 mm)
Résistances
R1...R36 = 75Ω, 0W125, 5%, SMD 0805
P1 = potentiomètre circulaire 6mm réglable par le dessus, 10kΩ, 0W1, 20%, (Piher PT6KV-103A2020)
Condensateurs
C1...C36 = 100nF, 50V, 5%, X7R, SMD 0805
C37, C38 = 47uF, 6,3V, 10%, tantale, taille de boîtier A (1206)
Semi-conducteurs
D1, D2 = S5J-E3/57T, taille de boîtier SMD SMC
LED1-LED36 = WS2812D-F8, 8mm, THT
Autres
K1, JP1 = barrettes, 3x1, vertical, pas de 2,54mm
Cavalier de shunt pour JP1, pas de 2,54mm
K2 = MJ-179PH (Multicomp Pro), connecteur d'alimentation CC, 4 A, diamètre des broches 1,95 mm
S1 = Interrupteur DIP, 4 voies
PA1...PE6 = 2 m de fil, 0,81mm rigide, 0,52mm² / 20AWG, isolé vert (Alpha Wire 3053/1 GR005)
H1...H5 = Entretoise en nylon, femelle-femelle, M3, 5mm
H1...H5 = Vis en nylon, M3, 5mm
Optionnel
Arduino Nano ESP32 avec les connecteurs
Liens
Elektor Labs
Accroche-regard basé sur Raspberry Pi
Une horloge à sable standard ne fait qu'indiquer le temps qui passe. En revanche, cette horloge à sable contrôlée par le Raspberry Pi Pico indique l'heure exacte en 'gravant' les quatre chiffres de l'heure et des minutes dans la couche de sable. Après un temps réglable, le sable est aplati par deux moteurs vibrants et tout recommence.
Au cœur de l'horloge de sable se trouvent deux servomoteurs qui entraînent un stylo dans un mécanisme de pantographe. Un troisième servomoteur soulève le stylo de haut en bas. Le bac à sable est équipé de deux moteurs vibrants qui aplatissent le sable. La partie électronique de l'horloge des sables se compose d'un Raspberry Pi Pico et d'une carte RTC/driver avec une horloge en temps réel, ainsi que des circuits de commande pour les servomoteurs.
Un manuel de construction détaillé peut être téléchargé.
Caractéristiques
Dimensions: 135 x 110 x 80 mm
Temps de construction : environ. 1,5 à 2 heures
Inclus
3x Feuilles acryliques prédécoupées avec toutes les pièces mécaniques
3x Mini servomoteurs
2x moteurs de vibration
1x Raspberry Pi Pico
1x Carte RTC/pilote avec les pièces assemblées
Ecrous, boulons, entretoises et fils pour l'assemblage
Sable blanc à grains fins
La télécommande universelle TV-B-Gone vous permet d'allumer ou d'éteindre pratiquement n'importe quel téléviseur. Vous contrôlez quand vous regardez la télévision, plutôt que ce que vous voyez. La télécommande porte-clés TV-B-Gone est si petite qu'elle se glisse facilement dans votre poche pour que vous l'ayez à portée de main quand vous en avez besoin, où que vous alliez : bars, restaurants, laveries automatiques, stades de baseball, arènes, etc.
Le kit TV-B-Gone est un excellent moyen d'enseigner l'électronique. Lorsqu'il est soudé ensemble, il vous permet d'éteindre presque n'importe quel téléviseur dans un rayon de 150 pieds ou plus. Il fonctionne sur plus de 230 codes d'alimentation au total – 115 codes américains/asiatiques et 115 autres codes européens. Vous pouvez sélectionner la zone souhaitée lors de l’assemblage du kit.
Il s'agit d'un kit non assemblé, ce qui signifie que la soudure et l'assemblage sont nécessaires – mais c'est très simple et constitue une excellente introduction à la soudure en général. Ce kit rend la télécommande TV-B-Gone populaire plus amusante car vous l'avez créée vous-même avec quelques bases de soudure et d'assemblage ! Montrez à vos amis et à votre famille à quel point vous êtes doué en technologie et divertissez-les avec la puissance du TV-B-Gone !
Le kit est alimenté par 2 piles AA et la sortie provient de 2 LED IR à faisceau étroit et de 2 LED IR à faisceau large.
Inclus
Toutes les pièces/composants requis
Requis
Outils, fer à souder et piles
Téléchargements
GitHub
Les FNIRSI NVS-40 sont des jumelles de vision nocturne conçues pour observer des objets dans des environnements sombres ou faiblement éclairés. Il offre une distance d'observation illimitée dans des conditions de faible luminosité et peut atteindre jusqu'à 300 mètres dans l'obscurité totale.
L'appareil est équipé d'une interface USB et d'un emplacement pour carte TF, permettant les mises à jour du micrologiciel et le stockage des photos et des vidéos. Entièrement fonctionnel, il dispose d'un écran couleur utilisable de jour comme de nuit. Les fonctionnalités clés incluent la capture de photos, l'enregistrement vidéo, la lecture et un zoom électronique jusqu'à 6x.
Cet appareil constitue l'outil auxiliaire ultime pour étendre les capacités de vision nocturne humaine.
Spécifications
Tube de dessin
Jumelles
Zoom électronique
6x
Grossissement
500x et amp; sous
Diamètre de l'objectif
25 mm
Faible luminosité ou distance d'observation de jour
2 m~∞
Distance d'observation entièrement noire
300 m (maximum)
Résolution vidéo
4K (3840x2160) / 2K (2560x1440) / 1080 FHD (1920x1080) / 720P (1280x720) / VGA (640x480) / QVGA (320x240)
Résolution des photos
36MP/32MP/30MP/24MP/20MP/16MP/12MP/10MP/8MP/5MP/3MP/VGA
Longueur d'onde IR
850 nm
Niveau de résistance à l'eau
IPX6
Balance des blancs
Automatique, Lumière du jour, Nuageux, Filament de tungstène, Fluorescent
ISO
Auto, 100, 200, 400, 800
Réglage de la luminosité de l'écran LCD
Niveaux élevé, moyen et faible
Fréquence de la source lumineuse
50 Hz/60 Hz
Stockage
Carte mémoire TF de 32 Go
Tension
3,7 V
Alimentation
Batterie interne 18650
Charge
USB-C (5 V/1 A)
Écran
Écran couleur HD IPS de 3,0 pouces
Température
−5~40°C
Humidité
0-80%
Langues
Anglais / Allemand / Français / Espagnol / Italien / Portugais / Russe / Chinois / Japonais
Dimensions
136 x 153 x 56 mm
Poids
265 g
Inclus
1x NVS-40 jumelles de vision nocturne
1x Pile au lithium 18650
1x Carte mémoire TF (32 Go)
1x Câble USB
1x Sac de rangement
1x Manuel
Téléchargements
Manual
Pixy2 can be taught to detect objects by the press of a button. It is equipped with a new line detection algorithm to use on line-following robots. It can learn to recognize intersection and follow road signs.
Pixy2 comes with various cables so that you can connect it with an Arduino or a Raspberry Pi out of the box. Furthermore, the I/O port offers several interfaces (SOI, I²C, UART, USB) to plug your Pixy2 in most boards.
Downloads
Documentation
Projects
Software
Ce kit de bras robot traceur polyvalent pour Arduino est équipé de servomoteurs à engrenages métalliques MG90S pour assurer des mouvements de dessin précis et stables.
Caractéristiques
Entièrement compatible avec l'Arduino IDE, inclut le code source complet pour un développement et une personnalisation faciles.
Équipé de servomoteurs à engrenages métalliques MG90S robustes pour plus de précision et de durabilité.
Inclut un module Bluetooth permettant un fonctionnement sans fil via une application dédiée.
L'embout du bras robotisé spécialement conçu maintient fermement les stylos ou marqueurs d'un diamètre de 8 à 10 mm, idéal pour les croquis et les dessins détaillés.
Inclus
Carte Nano compatible Arduino
Carte d'extension Nano
Module Bluetooth
Servomoteurs à engrenages entièrement métalliques MG90S
Cadre en aluminium
Plaque de base stable et épaisse
Vis et accessoires de fixation
Câbles de connexion
Câble de données USB
Vous cherchez un projet amusant pour Noël ? Assemblez et programmez cette figurine de renne en polyéthylène extralarge et faites briller ses LED de toutes les couleurs de l'arc-en-ciel ! Idéal pour les débutants et les makers confirmés !Ce kit éducatif et amusant combine soudure et programmation dans un projet XL. Tout d'abord, vous devrez souder quelques composants simples sur le circuit imprimé. Les composants comprennent des LED RVB fantaisie qui ont un effet diffus spécial. Une fois le travail de soudure terminé, vous pourrez programmer les couleurs et les effets lumineux des différentes LED grâce à l'Arduino Nano Every embarqué. L'Arduino est préprogrammé avec quelques effets LED de base, pour que votre kit fonctionne dès que vous l'alimenterez avec l'adaptateur inclus. Vous pouvez également choisir d'écrire votre propre programme en vous basant sur les exemples de programmation disponibles.Extensions programmablesLe circuit imprimé de ce projet est conçu spécialement pour que vous puissiez ajouter différentes extensions. Par exemple, ajoutez un écran OLED pour afficher des messages ou programmez-le pour décompter les jours jusqu'à Noël ! Ou ajoutez une puce IoT Tuya pour que votre projet puisse communiquer avec votre smartphone. Vous pouvez même ajouter un microphone, un capteur de mouvement ou un capteur de lumière.FeaturesCircuit imprimé de taille XL en forme de renne polymétrique.22 LED RVB adressables (programmables)14 x 5 mm RVB LED10 x 8 mm RVB LEDArduino Nano EveryBouton-poussoirCâble USB-A vers USB micro pour la programmationCâble USB-A vers USB B pour l'alimentationSupport en boisManuel complet et vidéo disponibles en 5 languesExemple de programmation pour Arduino disponibleÉducatif et amusant pour tout âge et tout niveauExtensible avec de nombreux ajouts :un écran OLEDun capteur IoT intelligent à connecter avec votre smartphoneun microphoneet plus encore!Non inclus : fer à souder, étain à souder, pinces et tapis à souder.SpecificationsDimensions: 168 x 270 mmAlimentation : 5 V/2,1 A max. (câble inclus)
Le Moteur Mendocino AR O-8 est un moteur électrique à lévitation magnétique, alimenté par l'énergie solaire, présenté sous forme de kit.
La lumière devient mouvement
Le moteur solaire Mendocino semble flotter dans l'air. À première vue, on ne voit pas pourquoi le rotor tourne. C'est la magie du moteur.
La force de Lorentz est une force électrique très faible. Dans une salle de classe, elle est détectée par une oscillation du courant dans le champ magnétique. Avec le moteur Mendocino, nous avons réussi à développer une belle application qui utilise cette faible force pour la propulsion. Grâce à son aimant de base dissimulé, le moteur fascinera les observateurs qui ont un penchant pour la technique.
En plein soleil, le moteur peut atteindre une vitesse de 1 000 tr/min. Ce qui est encore plus impressionnant, c'est que même la faible lueur d'une ample bougie à thé (D = 6 cm avec une hauteur de flamme d'environ 2 cm) suffit à faire fonctionner le moteur. Le moteur n'est pas encore une source d'énergie alternative, même s'il est tentant. On peut supposer qu'il restera un modèle attrayant jusqu'à ce qu'un esprit ingénieux réfute cette hypothèse.
Dimensions
Toutes les cellules solaires 65 x 20 mm
Diamètre du miroir : 25 mm
Poids du rotor : environ 150 g
Longueur du modèle : 160 mm
Largeur du modèle : 85 mm
Hauteur du cadre : environ 85 mm
Matériau du cadre : acrylique noir
Tube en aluminium poli
Couleur du miroir : argent
Le manuel d'instructions du moteur Mendocino, facile à suivre, comprend plus de 70 illustrations. Il décrit une approche sûre et pratique de la construction, mais vous laisse aussi la liberté d'essayer vos solutions.
Kit partiellement pré-assemblé
Une partie du kit est préassemblée. Le collage de la vitre en verre borosilicate sur la surface acrylique nécessite des connaissances et des outils spécialisés. Nous ne voulons pas imposer cela à l'amateur. Par exemple, l'aimant de base est fixé au tube d'aluminium.
En tant qu'amateur, vous aurez besoin d'un peu de savoir-faire et d'outils appropriés : couteau à tapis, fer à souder et étain, colle chaude, pinces, et une pince ou une virole pour fixer l'aide à l'assemblage fournie. Le plaisir est garanti !
Le Pico Cube est une carte d'extension LED 4x4x4 pour Raspberry Pi Pico avec une tension de fonctionnement de 5 VCC. Le Pico Cube, avec ses 64 LED monochromes de couleur bleue, est une façon amusante d'apprendre la programmation. Il est conçu pour réaliser des opérations incandescentes avec une faible consommation d'énergie, une conception robuste et une installation facile qui permettent aux utilisateurs, enfants et adultes, d'apprendre les effets des lumières LED avec différents motifs de couleurs via la combinaison de logiciel et de matériel, c'est-à-dire le Raspberry Pi Pico.
Caractéristiques
Header standard Raspberry Pi Pico à 40 broches
Communication basée sur GPIO
64 LED monochromes haute intensité
Accès individuel à chaque LED
Accès à chaque couche
Spécifications
Tension de fonctionnement : 5 V
Couleur : bleue
Communication : GPIO
LEDs : 64
Inclus
1x Pico Cube PCB de base
4x PCB de couche
8x PCB de pilier
2x connecteurs mâles Berg (1 x 20)
2x connecteurs femelles Berg (1 x 20)
70 LEDs
Remarque : Le Raspberry Pi Pico n'est pas inclus.
Téléchargements
GitHub
Wiki
Raspberry Pi Pico is a great solution for servo control. With the hardware PIO, the Pico can control the servos by hardware, without usage of times/ interrupts, and limit the usage of the MCU.Le pilotage des six servos de ce bras robotique nécessite très peu de capacité de la MCU, qui peut donc s'occuper d'autres tâches. Ce bras robotique à 6 DOF est un outil pratique pour l'enseignement et l'apprentissage de la robotique et de l'utilisation de Pico. Il y a cinq servos MG996s (quatre sont nécessaires dans l'assemblage et un comme pièce de rechange) et trois servos de 25 kg (deux nécessaires dans l'assemblage et un comme pièce de rechange). Notez que pour les servos, l'angle varie de 0° à 180°. Tous les servos doivent être préréglés à 90° (avec une impulsion de 1,5 ms à 50 Hz) avant le montage pour éviter d'endommager les servos pendant le mouvement. Ce produit comprend tous les éléments nécessaires à la création d'un bras robotique basé sur Pico et Micropython.Inclus1x Raspberry Pi Pico1x Raspberry Pi Pico pilote de servo1x Set '6 DOF Robot Arm'1x Alimentation 5 V/5 A2x Servo de rechangeTéléchargementsGitHubWikiGuide d'assemblageVideo d'assemblage
The Naturebytes Wildlife Cam Case is the perfect weatherproof housing to take your Raspberry Pi, camera and sensors outdoors.
It is compatible with all Raspberry Pi models, it has an IR Lens to optimise motion detection, a camera strap so you can set up your ideal wildlife shots or you can take advantage of the electronics mount, with space for additional sensors, power solutions and upgrades….and it looks awesome!
Caractéristiques
Weatherproof (certified IP55)
Electronics mount compatible with Raspberry Pi models (including all model A+, B, B, B+ and Zero models)
Fresnel IR lens to optimise motion detection
Clip and hinge opening for easy access to the Pi’s ports and internal components
Nylon camera attachment strap for securing outside
Can be secured with a padlock
Fasteners and spacers for attaching electronics
Rear cable access
Rear attachments for modular upgrades
No soldering required
Téléchargements
Assembly Guides
Créez des éclairs d'un simple effleurement des doigts ou d'un claquement de mains
La Boule Magique Plasma est un gadget technologique de pointe et une œuvre d'art captivante. À l'intérieur de la sphère de verre, un mélange gazeux spécial crée des effets lumineux fascinants lorsqu'il est activé par un courant haute fréquence, comme si vous teniez un orage entre vos mains.
Parfait pour la maison, le bureau, l'école, l'hôtel ou le bar, c'est un élément décoratif unique qui éveille la curiosité. Envie d'un cadeau original et original ? La Boule Magique Plasma est un excellent choix pour vos proches.
Malgré ses effets époustouflants, la Boule Magique Plasma consomme très peu d'électricité. Le verre lui-même est fabriqué dans un matériau spécialement durci et très résistant, capable de supporter des températures allant jusqu'à 522°C.
Spécifications
Matériau
Plastique
Diamètre de la boule
15 cm (6 pouces)
Tension d'entrée
220 V
Tension de sortie
12 V
Puissance
15 W
Dimensions
25 x 15,5 x 15,5 cm
La tête laser Elektor transforme l'horloge de sable Elektor dans une horloge qui écrit l'heure sur un film qui brille dans le noir au lieu de sable. En plus d’afficher l’heure, il peut également être utilisé pour créer des dessins éphémères. Le pointeur laser de 5 mW, avec une longueur d'onde de 405 nm, produit des dessins vert vif sur le film qui brille dans le noir. Pour de meilleurs résultats, utilisez le kit dans une pièce faiblement éclairée. Attention : ne regardez jamais directement dans le faisceau laser !
Le kit comprend tous les composants nécessaires, mais la soudure de trois fils est nécessaire.
Remarque : Ce kit est également compatible avec l'horloge de sable d'origine basée sur Arduino de 2017. Pour plus de détails, voir Elektor 1-2/2017 et Elektor 1-2/2018.
CrowBot BOLT est une voiture robot open source contrôlée par ESP32, intelligente, simple et facile à utiliser. Il est compatible avec les environnements Arduino et MicroPython, avec programmation graphique via Letscode. 16 parcours d'apprentissage avec des expériences intéressantes sont disponibles.
Caractéristiques
16 leçons en trois langues (Letscode, Arduino, Micropython), apprentissage rapide et expériences amusantes
Compatible avec Arduino, environnement de développement MicroPython, utilisant la programmation graphique Letscode, facile à utiliser
Une forte évolutivité, avec une variété d'interfaces, peut être étendue et utilisée avec les modules Crowtail
Une variété de modes de télécommande, vous pouvez utiliser la télécommande infrarouge et le joystick pour contrôler la voiture
Spécifications
Processeur
ESP32-Wrover-B (8 Mo)
La programmation
Letscode, Arduino, Micropython
Methode de CONTROLE
Télécommande Bluetooth/télécommande infrarouge
Saisir
Bouton, capteur de lumière, module de réception infrarouge, capteur à ultrasons, capteur de suivi de ligne
Sortir
Buzzer, lumière RVB programmable, moteur
Wi-Fi et Bluetooth
Oui
Capteur de lumière
Peut réaliser la fonction de chasser la lumière ou d'éviter la lumière
Capteur à ultrasons
Lorsqu'un obstacle est détecté, l'itinéraire de conduite de la voiture peut être corrigé pour éviter l'obstacle
Capteur de suivi de ligne
Peut faire bouger la voiture le long des lignes sombres/noires, juger et corriger intelligemment le chemin de conduite
Avertisseur sonore
Peut faire sonner/siffler la voiture, apportant une expérience sensorielle plus directe
Lumière RVB programmable
Grâce à la programmation, il peut afficher des lumières colorées dans différentes scènes
Récepteur infrarouge
Recevez des signaux de télécommande infrarouge pour réaliser la télécommande
Interfaces
1x USB-C, 1x I²C, 1x A/D
Type de moteur
Moteur à engrenages micro CC GA12-N20
Température de fonctionnement
-10 ℃ ~ + 55 ℃
Source de courant
4 piles 1,5 V (non incluses)
Vie de la batterie
1,5 heures
Dimensions
128x92x64mm
Poids
900g
Inclus
1x châssis
1x capteur à ultrasons
1x support de batterie
2x roues
4x vis M3x8mm
2x colonne en cuivre M3x5 mm
2x plaques acryliques latérales
1x plaques acryliques avant
1x tournevis
2x câble Crowtail 4 broches
1x câble USB-C
1x télécommande infrarouge
1x instructions et carte du tracé de la ligne
1x Joystick
Téléchargements
Wiki
CrowBot-BOLT_Assembly-Instruction
Joystick-pour-CrowBot-BOLT_Assembly-Instruction
CrowBot_BOLT_Beginner's_Guide
Conception de documents ou CrowBot
Conception de documents de joystick
Code de leçon
modèle 3D
Code source d'usine
Cette offre groupée contient le populaire horloge de sable Elektor pour Raspberry Pi Pico et la nouvelle upgrade tête laser Elektor, offrant encore plus d'options d'affichage de l'heure. Non seulement vous pouvez « graver » l'heure actuelle dans le sable, mais vous pouvez désormais également l'écrire sur une feuille phosphorescente ou créer des dessins verts.
Contenu de l'offre groupée
Horloge de sable Elektor pour Raspberry Pi Pico (prix normal : 50 €)
NOUVEAU : Upgrade tête laser Elektor pour horloge de sable (prix normal : 35 €)
Horloge de sable Elektor pour Raspberry Pi Pico (Accroche-regard basé sur le Raspberry Pi)
Une horloge à sable standard ne fait qu'indiquer le temps qui passe. En revanche, cette horloge à sable contrôlée par le Raspberry Pi Pico indique l'heure exacte en 'gravant' les quatre chiffres de l'heure et des minutes dans la couche de sable. Après un temps réglable, le sable est aplati par deux moteurs vibrants et tout recommence.
Au cœur de l'horloge de sable se trouvent deux servomoteurs qui entraînent un stylo dans un mécanisme de pantographe. Un troisième servomoteur soulève le stylo de haut en bas. Le bac à sable est équipé de deux moteurs vibrants qui aplatissent le sable. La partie électronique de l'horloge des sables se compose d'un Raspberry Pi Pico et d'une carte RTC/driver avec une horloge en temps réel, ainsi que des circuits de commande pour les servomoteurs.
Un manuel de construction détaillé peut être téléchargé.
Caractéristiques
Dimensions: 135 x 110 x 80 mm
Temps de construction : environ. 1,5 à 2 heures
Inclus
3x Feuilles acryliques prédécoupées avec toutes les pièces mécaniques
3x Mini servomoteurs
2x moteurs de vibration
1x Raspberry Pi Pico
1x Carte RTC/pilote avec les pièces assemblées
Ecrous, boulons, entretoises et fils pour l'assemblage
Sable blanc à grains fins
Upgrade tête laser Elektor pour horloge de sablee
La nouvelle tête laser Elektor transforme l'horloge de sable dans une horloge qui écrit l'heure sur un film qui brille dans le noir au lieu de sable. En plus d’afficher l’heure, il peut également être utilisé pour créer des dessins éphémères. Le pointeur laser de 5 mW, avec une longueur d'onde de 405 nm, produit des dessins vert vif sur le film qui brille dans le noir. Pour de meilleurs résultats, utilisez le kit dans une pièce faiblement éclairée. Attention : ne regardez jamais directement dans le faisceau laser !
Le kit comprend tous les composants nécessaires, mais la soudure de trois fils est nécessaire.
Remarque : Ce kit est également compatible avec l'horloge de sable d'origine basée sur Arduino de 2017. Pour plus de détails, voir Elektor 1-2/2017 et Elektor 1-2/2018.
Caractéristiques
Renseignez-vous sur les prévisions météo de votre région
Écouter une blague
Demande-lui de te chanter une chanson
Régler un chronomètre
Faire en sorte que Spencer affiche des animations personnalisées
Riez de ses références ringardes à la culture populaire
Inclus
Circuit imprimé de Spencer comprenant une grille LED pré-soudée de 144 pixels
La carte cérébrale – fait des choses intelligentes et comprend un processeur double cœur, une puce de mémoire flash de 16 Mo et des circuits de gestion de l'alimentation
Boîtier en acrylique – cela protège les entrailles de Spencer du monde extérieur
Un gros bouton rouge
Divers composants plus petits tels que des résistances et des boutons-poussoirs
Câble micro USB pour alimenter votre Spencer
Haut-parleur 5W
Livret d'instructions - prêt pour votre consommation de connaissances hors ligne
Vous trouverez ici le guide de montage !
Il s'agit d'un kit de mécanisme panoramique-inclinaison conçu explicitement pour Pixy2. Après avoir assemblé le kit et l'avoir connecté à Pixy2, vous pourrez suivre des objets colorés à l'aide de la démo Pan/Tilt.
Il comprend deux pièces en plastique découpées au laser pour la base, deux servos différents pour les axes de panoramique et d'inclinaison, ainsi que tout le matériel de montage et les attaches de câble dont vous avez besoin pour l'assemblage.
Les fonctions
Le mécanisme d'inclinaison panoramique du Pixy2 a été repensé, le rendant plus petit et plus rapide que le mécanisme d'inclinaison panoramique du Pixy original.
Tout le matériel nécessaire est inclus.
La base panoramique et inclinable se fixe directement à un Arduino avec un motif de trous compatible Arduino et comprend des entretoises et du matériel de montage.
Plusieurs démos panoramiques et inclinables sont incluses et peuvent être exécutées avec Arduino, Raspberry Pi ou de manière autonome (pas de contrôleur).
Instructions d'installation complètes
Avez-vous besoin d'une simple caméra IA pour améliorer vos projets ?
La conception intuitive de la caméra HuskyLens AI permet à l'utilisateur de contrôler différents aspects de la caméra en appuyant simplement sur des boutons. Vous pouvez démarrer et arrêter l'apprentissage de nouveaux objets et même changer d'algorithme depuis l'appareil.
Pour réduire davantage le besoin de se connecter à un PC, la caméra HuskyLens AI est livrée avec un écran de 2 pouces afin que vous puissiez voir ce qui se passe en temps réel.
Caractéristiques
Processeur : Kendryte K210
Capteur d'image : OV2640 (appareil photo 2,0 mégapixels)
Tension d'alimentation : 3,3 ~ 5,0 V.
Consommation électrique (TYP) : 320 mA à 3,3 V, 230 mA à 5,0 V (mode de reconnaissance faciale ; luminosité du rétroéclairage 80 % ; lumière d'appoint éteinte)
Interface de connexion : UART, I²C
Affichage : écran IPS de 2,0 pouces avec une résolution de 320 x 240
Algorithmes intégrés : reconnaissance de visage, suivi d'objets, reconnaissance d'objets, suivi de lignes, reconnaissance de couleurs, reconnaissance d'étiquettes
Dimensions : 52 x 44,5 mm
Inclus
1x carte mère HuskyLens
1x vis M3
1x écrous M3
1x petit support de montage
1x support d'élévation
1x câble de capteur de gravité à 4 broches
Si vous cherchez un moyen simple d'apprendre la soudure, ou si vous souhaitez simplement fabriquer un petit gadget que vous pourrez transporter, cet ensemble est une excellente opportunité. Le jeu de réaction est un kit éducatif qui vous apprend à souder et, à la fin, vous obtenez votre propre petit jeu. Le but du jeu est d'appuyer sur le bouton à côté de la LED dès qu'elle s'allume. À chaque bonne réponse, le jeu devient un peu plus difficile – le temps dont vous disposez pour appuyer sur le bouton diminue. Combien de bonnes réponses pouvez-vous obtenir ?
Il est basé sur le microcontrôleur ATtiny404, programmé en Arduino. À l'arrière, vous trouverez une pile CR2032 qui rend le kit portable. Il y a aussi un porte-clés. Le processus de soudure est assez simple en fonction de la marque sur le PCB.
Inclus
1x carte de circuit imprimé
1x microcontrôleur ATtiny404
4x LED
4x boutons poussoirs
1x interrupteur
4x résistances (330 ohms)
1x support de pile CR2032
1x pile CR2032
1x porte-clés
Le joystick M5Atom est une télécommande programmable polyvalente à double joystick comportant l'AtomS3 comme contrôleur principal, avec un STM32 gérant les fonctions de co-traitement.
Il est équipé de deux joysticks à 5 directions avec capteurs à effet Hall, de deux boutons de fonction et de LED RVB intégrées pour l'interaction homme-machine et l'indication d'état.
L'appareil comprend deux circuits de charge de batterie haute tension. Il est préchargé avec le firmware de contrôle Stamp Fly et communique avec Stamp Fly via le protocole ESP-NOW. Le code source du micrologiciel est open source. Ce produit convient au contrôle de drones, au contrôle de robots, aux voitures intelligentes et à divers projets de bricolage.
Applications
Contrôle des drones
Contrôle des robots
Voitures intelligentes
Projets de bricolage
Caractéristiques
STM32F030F4P6
Équipé de M5AtomS3
Compatible avec Atom Lite, Atom Matrix, AtomS3 Lite, AtomS3
Deux joysticks, deux boutons, interrupteur à bascule
LED RVB WS2812
Double circuit de charge de batterie au lithium haute tension
Détection de batterie
Spécifications
MCU
STM32F030F4P6
RVB
WS2812C
CI de charge
TP4067 à 4,35 V
Batterie
300 mAh
Courant de charge
500 mA
Bouton
Bouton Gauche/Droite
Sonnerie
Buzzer passif intégré @ 5020
Température de fonctionnement
0-40°C
Dimensions
84 x 60 x 31,5 mm
Poids
63,5 g
Inclus
1x Atom JoyStick
1x Batterie au lithium haute tension de 300 mAh
Téléchargements
Documentation
M5Stamp Fly est un quadricoptère open source programmable, doté du StampS3 comme contrôleur principal. Il intègre un gyroscope 6 axes BMI270 et un magnétomètre 3 axes BMM150 pour la détection d'attitude et de direction. Le capteur de pression barométrique BMP280 et deux capteurs de distance VL53L3 permettent un maintien précis de l'altitude et l'évitement des obstacles. Le capteur de débit optique PMW3901MB-TXQT permet la détection de déplacement.
Le kit comprend un buzzer, un bouton de réinitialisation et des LED RVB WS2812 pour l'interaction et l'indication d'état. Il est équipé d'une batterie haute tension de 300 mAh et de quatre moteurs sans noyau à grande vitesse. Le PCB comprend un INA3221AIRGVR pour la surveillance du courant/tension en temps réel et dispose de deux connecteurs Grove pour des capteurs et périphériques supplémentaires.
Préchargé avec un firmware de débogage, le Stamp Fly peut être contrôlé à l'aide d'un joystick Atom via le protocole ESP-NOW. Les utilisateurs peuvent choisir entre les modes automatique et manuel, permettant une mise en œuvre facile de fonctions telles que le survol et les retournements précis. Le code source du micrologiciel est open source, ce qui rend le produit adapté à l'éducation, à la recherche et à divers projets de développement de drones.
Applications
Éducation
Recherche
Développement de drones
Projets de bricolage
Caractéristiques
M5StampS3 comme contrôleur principal
BMP280 pour la détection de la pression barométrique
Capteurs de distance VL53L3 pour le maintien d'altitude et l'évitement d'obstacles
Capteur d'attitude à 6 axes
Magnétomètre à 3 axes pour la détection de direction
Détection de flux optique pour la détection de vol stationnaire et de déplacement
Sonnerie
Batterie haute tension de 300 mAh
Détection de courant et de tension
Extension du connecteur Grove
Spécifications
M5StampS3
ESP32-S3@Xtensa LX7, 8 Mo de Flash, WiFi, prise en charge OTG\CDC
Moteur
716-17600kv
Capteur de distance
VL53L3CXV0DH/1 (0x52) à 3 m maximum
Capteur de flux optique
PMW3901MB-TXQT
Capteur barométrique
BMP280 (0x76) à 300-1 100 hPa
Magnétomètre 3 axes
BMM150 (0x10)
Capteur IMU 6 axes
IMC270
Bosquet
I²C+UART
Batterie
Batterie au lithium haute tension 1S (300 mAh)
Détection de courant/tension
INA3221AIRGVR (0x40)
Sonnerie
Buzzer passif intégré @ 5020
Température de fonctionnement
0-40°C
Dimensions
81,5 x 81,5 x 31 mm
Poids
36,8 g
Inclus
1x Stamp Fly
1x Batterie au lithium haute tension de 300 mAh
Téléchargements
Documentation
L'éclairage de socle intelligent de Gight s'allume et s'éteint automatiquement lorsque vous vous levez la nuit. Le détecteur de mouvement vous voit sortir du lit et la lumière s'allume ! Il y a un chemin éclairé du lit aux toilettes. Les obstacles sur le chemin vers les toilettes sont immédiatement visibles et les risques de trébuchement sont évités. La recherche scientifique montre que la peur de tomber est considérablement réduite lors de l'utilisation d'un Guide Light.
L'éclairage LED a une intensité lumineuse parfaite. La lumière est suffisamment subtile pour ne pas vous réveiller, mais suffisamment brillante pour une orientation fiable. La Guiding Light est bien plus qu’une simple veilleuse.
Le Pico Cube est un cube LED 4x4x4 conçu pour le Raspberry Pi Pico avec une tension de fonctionnement de 5 VDC. Le Pico cube, avec ses 64 LEDs monochromes verts, est une façon amusante d'apprendre la programmation. Il est conçu pour effectuer des opérations incandescentes avec une faible consommation d'énergie, une apparence robuste et une installation facile, ce qui permet aux gens/enfants/utilisateurs d'apprendre les effets des lumières LED avec un agencement de couleurs différent grâce à la combinaison de logiciels et de matériel, c'est-à-dire le Raspberry Pi Pico.
Caractéristiques
Header Raspberry Pi Pico standard de 40 broches
Communication basée sur les GPIO
64 LEDs monochromes haute intensité
Accès individuel aux LEDs
Accès à chaque couche
Spécifications
Tension de fonctionnement : 5 V
Couleur : Verte
Communication : GPIO
LEDs : 64
Inclus
1x PCB de base pour le Pico Cube
4x PCB de couche
8x PCB de pilier
2x connecteur mâle Berg (1 x 20)
2x connecteur femelle Berg (1 x 20)
70 LEDs
Note : Le Raspberry Pi Pico n'est pas inclus.
Téléchargements
GitHub
Wiki