Programmez votre REKA:BIT avec Microsoft MakeCode Editor . Ajoutez simplement l'extension REKA:BIT MakeCode et vous êtes prêt à partir. Si vous êtes débutant, vous pouvez commencer par le mode de programmation par blocs ; faites simplement glisser, déposez et assemblez les blocs de codage. Pour les utilisateurs plus avancés, vous pouvez facilement passer en mode JavaScript ou Python sur MakeCode Editor pour la programmation textuelle.
REKA:BIT possède de nombreux voyants LED pour vous aider dans votre codage et votre dépannage. Il couvre les broches IO connectées aux six ports Grove et aux sorties du moteur CC du coprocesseur. On peut facilement vérifier son programme et la connexion de son circuit en surveillant ces LED.
En outre, REKA:BIT dispose également d'un indicateur marche/arrêt, de LED de sous-tension et de surtension intégrées pour donner des avertissements appropriés en cas de problème avec l'entrée d'alimentation. REKA:BIT dispose d'un coprocesseur pour gérer le multitâche plus efficacement. Jouer de la musique tout en contrôlant jusqu'à 4 servomoteurs et 2 moteurs à courant continu, animer une matrice de LED micro:bit et même éclairer des LED RVB de différentes couleurs, le tout en même temps, n'est pas un problème pour REKA:BIT.
Caractéristiques
2x bornes de moteur à courant continu Boutons de test rapide du moteur intégrés (aucun codage nécessaire)
4x ports pour servomoteur
2x LED RVB Neopixel
6x ports Grove (3,3 V)
3x entrées analogiques/ports IO numériques
2x ports E/S numériques
1x interface I²C
Prise DC pour entrée d'alimentation (3,6 - 6 VDC)
Bouton ON / OFF
Indicateur de mise sous tension
Indicateur et protection de sous-tension (FAIBLE)
Indicateur et protection de surtension (HAUTE)
Dimensions : 10,4 x 72 x 15 mm
Inclus
1x carte d'extension REKA:BIT
1x câble d'alimentation et de données USB
1x support de pile 4xAA
1x Mini tournevis
3x câble Grove vers connecteur femelle
2x bloc de construction 1x9 bras de levage
4x goupilles de friction pour blocs de construction
Attention : carte micro:bit non incluse
M5Stamp Fly est un quadricoptère open source programmable, doté du StampS3 comme contrôleur principal. Il intègre un gyroscope 6 axes BMI270 et un magnétomètre 3 axes BMM150 pour la détection d'attitude et de direction. Le capteur de pression barométrique BMP280 et deux capteurs de distance VL53L3 permettent un maintien précis de l'altitude et l'évitement des obstacles. Le capteur de débit optique PMW3901MB-TXQT permet la détection de déplacement.
Le kit comprend un buzzer, un bouton de réinitialisation et des LED RVB WS2812 pour l'interaction et l'indication d'état. Il est équipé d'une batterie haute tension de 300 mAh et de quatre moteurs sans noyau à grande vitesse. Le PCB comprend un INA3221AIRGVR pour la surveillance du courant/tension en temps réel et dispose de deux connecteurs Grove pour des capteurs et périphériques supplémentaires.
Préchargé avec un firmware de débogage, le Stamp Fly peut être contrôlé à l'aide d'un joystick Atom via le protocole ESP-NOW. Les utilisateurs peuvent choisir entre les modes automatique et manuel, permettant une mise en œuvre facile de fonctions telles que le survol et les retournements précis. Le code source du micrologiciel est open source, ce qui rend le produit adapté à l'éducation, à la recherche et à divers projets de développement de drones.
Applications
Éducation
Recherche
Développement de drones
Projets de bricolage
Caractéristiques
M5StampS3 comme contrôleur principal
BMP280 pour la détection de la pression barométrique
Capteurs de distance VL53L3 pour le maintien d'altitude et l'évitement d'obstacles
Capteur d'attitude à 6 axes
Magnétomètre à 3 axes pour la détection de direction
Détection de flux optique pour la détection de vol stationnaire et de déplacement
Sonnerie
Batterie haute tension de 300 mAh
Détection de courant et de tension
Extension du connecteur Grove
Spécifications
M5StampS3
ESP32-S3@Xtensa LX7, 8 Mo de Flash, WiFi, prise en charge OTG\CDC
Moteur
716-17600kv
Capteur de distance
VL53L3CXV0DH/1 (0x52) à 3 m maximum
Capteur de flux optique
PMW3901MB-TXQT
Capteur barométrique
BMP280 (0x76) à 300-1 100 hPa
Magnétomètre 3 axes
BMM150 (0x10)
Capteur IMU 6 axes
IMC270
Bosquet
I²C+UART
Batterie
Batterie au lithium haute tension 1S (300 mAh)
Détection de courant/tension
INA3221AIRGVR (0x40)
Sonnerie
Buzzer passif intégré @ 5020
Température de fonctionnement
0-40°C
Dimensions
81,5 x 81,5 x 31 mm
Poids
36,8 g
Inclus
1x Stamp Fly
1x Batterie au lithium haute tension de 300 mAh
Téléchargements
Documentation
Le Challenger RP2040 LoRa est une carte de microcontrôleur Adafruit Feather compatible Arduino/CircuitPython basée sur la puce Raspberry Pi Pico (RP2040). L'émetteur-récepteur est doté d'un modem LoRa à longue portée qui fournit une communication à spectre étalé à très longue portée et une immunité élevée aux interférences tout en minimisant la consommation de courant. LoRa Le module LoRa intégré (RFM95W) peut atteindre une sensibilité de plus de -148 dBm en utilisant un cristal et quelques composants. La sensibilité élevée combinée à l'amplificateur de puissance intégré de +20 dBm permet d'obtenir un budget de liaison de premier ordre, ce qui le rend optimal pour toute application nécessitant de la portée ou de la robustesse. LoRa offre également des avantages significatifs en termes de blocage et de sélectivité par rapport aux techniques de modulation conventionnelles, résolvant ainsi le compromis traditionnel de conception entre la portée, l'immunité aux interférences et la consommation d'énergie. Le RFM95W est connecté au RP2040 via le canal SPI 1 plus quelques ports GPIO nécessaires à la signalisation. Un connecteur U.FL est utilisé pour attacher votre antenne LoRa à la carte. 168 dB de budget de liaison maximum +20 dBm - 100 mW de sortie RF constante par rapport à la tension d'alimentation PA à haut rendement de +14 dBm Débit binaire programmable jusqu'à 300 kbps Haute sensibilité : jusqu'à -148 dBm IIP3 récepteur/émetteur : -12,5 dBm Excellente immunité de blocage Faible courant RX de 10,3 mA, rétention de registre de 200 nA Synthétiseur entièrement intégré avec une résolution de 61 Hz FSK, GFSK, MSK, GMSK, LoRaTM et modulation OOK Synchronisateur de bits intégré pour la récupération de l'horloge Détection de préambule Plage dynamique de 127 dB RSSI Détection RF automatique et CAD avec AFC ultra-rapide Moteur de paquets jusqu'à 256 octets avec CRC Spécifications Microcontrôleur Raspberry Pi RP2040 (Cortex-M0+ double cœur 133 MHz) SPI Deux canaux SPI (deuxième SPI connecté au RFM95W) I²C Un canal I²C UART Un canal UART Entrées analogiques 4 entrées analogiques Module radio RFM95W de Hope RF Mémoire flash 8 Mo, 133 MHz Mémoire SRAM 264 Ko (répartis en 6 banques) Contrôleur USB 2.0 Jusqu'à 12 MBit/s à pleine vitesse (PHY USB 1.1 intégré) Connecteur de batterie JST Pas de 2,0 mm Chargeur LiPo embarqué 450 mA courant de charge standard Dimensions 51 x 23 x 3,2 mm Poids 9 g Téléchargements Fiche technique Dossier de conception
Si vous cherchez un moyen simple d'apprendre la soudure, ou si vous souhaitez simplement fabriquer un petit gadget que vous pourrez transporter, cet ensemble est une excellente opportunité. Le jeu de réaction est un kit éducatif qui vous apprend à souder et, à la fin, vous obtenez votre propre petit jeu. Le but du jeu est d'appuyer sur le bouton à côté de la LED dès qu'elle s'allume. À chaque bonne réponse, le jeu devient un peu plus difficile – le temps dont vous disposez pour appuyer sur le bouton diminue. Combien de bonnes réponses pouvez-vous obtenir ?
Il est basé sur le microcontrôleur ATtiny404, programmé en Arduino. À l'arrière, vous trouverez une pile CR2032 qui rend le kit portable. Il y a aussi un porte-clés. Le processus de soudure est assez simple en fonction de la marque sur le PCB.
Inclus
1x carte de circuit imprimé
1x microcontrôleur ATtiny404
4x LED
4x boutons poussoirs
1x interrupteur
4x résistances (330 ohms)
1x support de pile CR2032
1x pile CR2032
1x porte-clés
If you enjoy DIY electronics, projects, software and robots, you’ll find this book intellectually stimulating and immediately useful. With the right parts and a little guidance, you can build robot systems that suit your needs more than overpriced commercial systems can.
20 years ago, robots based on simple 8-bit processors and touch sensors were the norm. Now, it’s possible to build multi-core robots that can react to their surroundings with intelligence. Today’s robots combine sensor readings from accelerometers, gyroscopes and computer vision sensors to learn about their environments. They can respond using sophisticated control algorithms and they can process data both locally and in the cloud.
This book, which covers the theory and best practices associated with advanced robot technologies, was written to help roboticists, whether amateur hobbyist or professional, take their designs to the next level. As will be seen, building advanced applications does not require extremely costly robot technology. All that is needed is simply the knowledge of which technologies are out there and how best to use each of them.
Each chapter in this book will introduce one of these different technologies and discuss how best to use it in a robotics application. On the hardware side, we’ll cover microcontrollers, servos, and sensors, hopefully inspiring you to design your own awe-inspiring, next-generation systems. On the software side, we’ll cover programming languages, debugging, algorithms, and state machines. We’ll focus on the Arduino, the Parallax Propeller, Revolution Education PICAXE and projects I’ve with which I’ve been involved, including the TBot educational robot, the PropScope oscilloscope, the 12Blocks visual programming language, and the ViewPort development environment. In addition, we’ll serve up a comprehensive introduction to a variety of essential topics, including output (e.g. LEDs, servo motors), and communication technologies (e.g. infrared, audio), that you can use to develop systems that interact to stimuli and communicate with humans and other robots. To make these topics as accessible as possible, handy schematics, sample code and practical tips regarding building and debugging have been included.
Hanno Sander
Christchurch, New Zealand
Le Pico Cube est un cube LED 4x4x4 conçu pour le Raspberry Pi Pico avec une tension de fonctionnement de 5 VDC. Le Pico cube, avec ses 64 LEDs monochromes verts, est une façon amusante d'apprendre la programmation. Il est conçu pour effectuer des opérations incandescentes avec une faible consommation d'énergie, une apparence robuste et une installation facile, ce qui permet aux gens/enfants/utilisateurs d'apprendre les effets des lumières LED avec un agencement de couleurs différent grâce à la combinaison de logiciels et de matériel, c'est-à-dire le Raspberry Pi Pico.
Caractéristiques
Header Raspberry Pi Pico standard de 40 broches
Communication basée sur les GPIO
64 LEDs monochromes haute intensité
Accès individuel aux LEDs
Accès à chaque couche
Spécifications
Tension de fonctionnement : 5 V
Couleur : Verte
Communication : GPIO
LEDs : 64
Inclus
1x PCB de base pour le Pico Cube
4x PCB de couche
8x PCB de pilier
2x connecteur mâle Berg (1 x 20)
2x connecteur femelle Berg (1 x 20)
70 LEDs
Note : Le Raspberry Pi Pico n'est pas inclus.
Téléchargements
GitHub
Wiki
Le T-Deck est un gadget de poche doté d'un écran LCD IPS de 2,8 pouces (320 x 240), d'un mini-clavier et d'un processeur double cœur ESP32. Bien qu’il ne s’agisse pas vraiment d’un smartphone, il offre beaucoup de potentiel aux passionnés de technologie. Avec un peu de savoir-faire en programmation, vous pouvez le transformer en un appareil de messagerie autonome ou en une plateforme de codage portable.
Spécifications
Microcontrôleur
Microprocesseur LX7 double cœur ESP32-S3FN16R8
Connectivité sans fil
Wi-Fi 2,4 GHz & Bluetooth 5 (LE)
Développement
Arduino, PlatformlO, MicroPython
Flash
16 Mo
PSRAM
8 Mo
Broche ADC de la batterie
IO04
Fonctions intégrées
Trackball, microphone, haut-parleur
Affichage
Interface IPS ST7789 SPI 2,8"
Résolution
320 x 240 (angle de vision complet)
Puissance de transmission
+22 dBm
Émetteur-récepteur LoRa SX1262 (fréquence)
868 MHz
Dimensions
100 x 68 x 11 mm
Inclus
1x T-Deck ESP32-S3 LoRa
1x Antenne FPC (868 MHz)
1x Broche mâle (6 broches)
1x Câble d'alimentation
Téléchargements
GitHub
Le SparkFun DataLogger IoT (9DoF) est un enregistreur de données préprogrammé pour enregistrer automatiquement les capteurs IMU, GPS, ainsi que divers capteurs de pression, d'humidité et de distance. Tout cela sans écrire une seule ligne de code ! Le DataLogger détecte, configure et enregistre automatiquement les capteurs Qwiic. Il a été spécialement conçu pour les utilisateurs qui ont simplement besoin de capturer beaucoup de données dans un fichier CSV ou JSON et de revenir à leur projet principal. Enregistrez les données sur une carte microSD ou envoyez-les sans fil vers votre service Internet des objets (IoT) préféré !
Inclus sur chaque DataLogger IoT se trouve un IMU permettant l'enregistrement intégré d'un accéléromètre triaxial, d'un gyroscope et d'un magnétomètre. Alors que le 9DOF Razor d'origine utilisait l'ancien MPU-9250, le DataLogger IoT utilise le ISM330DHCX de STMicroelectronics et le MMC5983MA de MEMSIC. Il suffit de mettre sous tension le DataLogger IoT, de configurer la carte pour enregistrer les lectures des dispositifs pris en charge, et de commencer l'enregistrement ! Les données peuvent être horodatées lorsque l'heure est synchronisée avec NTP, GNSS ou RTC.
Le DataLogger IoT est hautement configurable via une interface série facile à utiliser. Il suffit de brancher un câble USB-C et d'ouvrir un terminal série à 115200 bauds. La sortie de l'enregistrement est automatiquement diffusée à la fois dans le terminal et sur la carte microSD. Appuyer sur n'importe quelle touche dans la fenêtre du terminal ouvrira le menu de configuration.
Le DataLogger IoT (9DoF) scanne, détecte, configure et enregistre automatiquement divers capteurs Qwiic branchés sur la carte (sans soudure, sans programmation !).
Spécifications
Module ESP32-WROOM-32E
Transceiver WiFi 2,4 GHz intégré 802.11b/g/n
Configurable via CH340C
Plage de tension de fonctionnement
3,3 V à 6,0 V (via VIN)
5 V avec USB (via 5 V ou USB de type C)
3,6 V à 4,2 V avec batterie LiPo (via BATT ou connecteur JST à 2 broches)
Chargeur LiPo monobloc MCP73831 intégré
Taux de charge minimum de 500 mA
3,3 V (via 3V3)
Indicateur de niveau de charge LiPo MAX17048
Ports
1x USB-C
1x connecteur de type JST pour batterie LiPo
2x I²C compatibles Qwiic
1x emplacement pour microSD
Prise en charge de la SDIO 4 bits et des cartes microSD formatées en FAT32
IMU à 9 axes
Accéléromètre et gyroscope (ISM330DHCX)
Magnétomètre (MMC5983MA)
LEDs
Charge (CHG)
État (STAT)
WS2812-2020 RGB adressable
Jumpers
Interruption IMU
Interruption magnétomètre
LED RVB
LED d'état
LED de charge
Résistances de pull-up I²C
Bouclier USB
Boutons
Réinitialisation
Démarrage
Dimensions : 1,66 x 2,0" (4,2 x 5,1 cm)
Poids : 10,7 g
Téléchargements
Schéma
Fichiers Eagle
Dimensions de la carte
Guide de connexion
Pilotes CH340
Micrologiciel
Répertoire matériel GitHub
This air monitor is specifically used for monitoring greenhouses. It detects:
Air temperature & Humidity
CO2 concentration
Light intensity
Then transmit the data via LoRa P2P to the LoRa receiver (on your desk in the room) so that the user can monitor the field status or have it recorded for long-term analysis.
This module monitors the greenhouse field status and sends all sensor data regularly via LoRa P2P in Jason format. This LoRa signal can be received by the Makerfabs LoRa receiver and thus displayed/recorded/analyzed on the PC. The monitoring name/data cycle can be set with a phone, so it can be easily implemented into the file.
This air monitor is powered by an internal LiPo battery charged by a solar panel and can be used for at least 1 year with the default setting (cycle 1 hour).
Features
ESP32S3 module onboard with the WiFi and Bluetooth
Ready to use: Power it on directly to use
Module name/signal interval settable easily by phone
IP68 water-proof
Temperature: -40°C~80°C, ±0.3
Humidity: 0~100% moisture
CO2: 0~1000 ppm
Light intensity: 1-65535 lx
Communication distance: Lora: >3 km
1000 mAh battery, charger IC onboard
Solar panel 6 W, ensure system works
Downloads
Manual
BH1750 Datasheet
SGP30 Datasheet
Branchez un lecteur dans les en-têtes, utilisez un câble Qwiic, scannez votre étiquette d’identification 125kHz et l’ID 32 bits unique s’affichera à l’écran. L’appareil est livré avec une DEL de lecture et un buzzer, mais ne vous inquiétez pas, il y a un cavalier que vous pouvez couper pour désactiver le buzzer si vous voulez. En utilisant le système Qwiic pratique de SparkFun, aucune soudure n’est nécessaire pour le connecter au reste de votre système. Cependant, nous avons encore des broches espacées de 0,1' si vous préférez utiliser une platine d'expérimentation. En utilisant l’ATtiny84A de bord, le Qwiic RFID prend l’étiquette d’identification de six octets de votre carte RFID 125kHz, lui attache un horodatage, et le met sur une pile qui contient jusqu’à 20 scans RFID uniques à la fois. Cette information est facile à obtenir avec quelques commandes I2C simples.
Cette station météo Wi-Fi portable allie parfaitement fonctionnalité et style, offrant des mises à jour en temps réel de la température, de l'humidité et de l'heure, d'un seul coup d'œil.
Dotée d'un écran numérique clair, la station garantit une lecture et une compréhension faciles des données météorologiques et horaires. Son design minimaliste s'intègre parfaitement à tout environnement, ajoutant une touche de sophistication moderne sans attirer l'attention.
Caractéristiques
Affichage multifonction : affiche la météo, la pression atmosphérique, les températures minimales et maximales, la vitesse du vent, la ville, le pays/la région, la date, le jour de la semaine, la température extérieure et Humidité – tout en un coup d'œil.
Animations GIF personnalisées : Téléchargez vos propres GIF pour une expérience d'affichage personnalisée.
Connectivité Wi-Fi : Se connecte automatiquement à Internet pour récupérer les données météorologiques et horaires en temps réel.
Alimentation USB-C
Boîtier en plastique résistant
Dimensions : 45 x 35 x 40 mm
Le SparkFun JetBot AI Kit V2.1 constitue une excellente base pour créer de nouveaux projets d'IA pour toute personne intéressée par l'apprentissage de l'IA et la création d'applications amusantes. Il est facile à installer et à utiliser et est compatible avec de nombreux accessoires populaires.
Des didacticiels interactifs vous montrent comment utiliser la puissance de l'IA pour apprendre au SparkFun JetBot à suivre des objets, à éviter les collisions, et bien plus encore. Le Jetson Nano Developer Kit (non inclus dans ce kit) offre des outils utiles tels que la bibliothèque Jetson GPIO Python et convient aux capteurs et périphériques standards ; y compris quelques nouveaux de l’écosystème SparkFun Qwiic.
De plus, l'image incluse est livrée avec les fonctionnalités avancées de JetBot ROS (Robot Operating System) et AWS RoboMaker Ready avec AWS IoT Greengrass déjà installé. Le kit JetBot AI de SparkFun est le seul kit sur le marché aujourd'hui qui va au-delà des exemples JetBot standard et pénètre dans le monde de la robotique connectée et intelligente.
Le kit comprend tout ce dont vous avez besoin pour démarrer avec JetBot, à l'exception d'un tournevis cruciforme et d'une interface graphique de bureau Ubuntu. Veuillez noter que la possibilité de faire fonctionner plusieurs réseaux de neurones en parallèle n'est possible qu'avec une alimentation complète de 5 V-4 A.
Caractéristiques
Écosystème SparkFun Qwiic pour la communication I2C
L'écosystème peut être étendu avec 4x connecteurs Qwiic
Exemples d'applications pour le mouvement de base, la téléopération, l'évitement de collision et le suivi d'objets
Version compacte pour optimiser le réseau neuronal NVIDIA existant
Caméra FOV 136° pour la vision industrielle
Carte MicroSD pré-flaschée
Le châssis offre des possibilités d'extension
Compris
Carte MicroSD de 64 Go - image SparkFun JetBot pré-flashétée :
Image de base Nvidia Jetbot avec installé : package de bibliothèque SparkFun Qwiic Python
Pilote pour l'adaptateur WiFi Edimax
L'herbe verte
JetbotROS
Caméra grand angle et câble ruban Leopard Imaging 136FOV
Adaptateur WiFi EDIMAX
Pilote de moteur SparkFun Qwiic
SparkFun Micro OLED Breakout (Qwiic)
Tout le matériel et l'électronique de prototypage nécessaires pour compléter votre robot entièrement fonctionnel !
Requis
Kit de développement NVIDIA Jetson Nano
Vous trouverez ici le manuel d'installation fourni par SparkFun !
LuckFox Pico Mini est une micro-carte de développement Linux compacte basée sur la puce Rockchip RV1103, offrant une plate-forme de développement simple et efficace pour les développeurs. Il prend en charge une variété d'interfaces, notamment MIPI CSI, GPIO, UART, SPI, I²C, USB, etc., ce qui est pratique pour un développement et un débogage rapides.
Caractéristiques
Cœur ARM Cortex-A7 monocœur 32 bits avec NEON et FPU intégrés
Le NPU de 4e génération intégré, développé par Rockchip, offre une précision de calcul élevée et prend en charge la quantification hybride int, int8 et int16. La puissance de calcul d'int8 est de 0,5 TOPS, et jusqu'à 1,0 TOPS avec int4
ISP3.2 de troisième génération intégré et auto-développé, prend en charge 4 mégapixels, avec plusieurs algorithmes d'amélioration et de correction d'image tels que HDR, WDR, réduction du bruit à plusieurs niveaux, etc.
Offre de puissantes performances d'encodage, prend en charge le mode d'encodage intelligent et l'économie de flux adaptative en fonction de la scène, permet d'économiser plus de 50% du débit binaire du mode CBR conventionnel afin que les images de la caméra soient en haute définition avec une taille plus petite, et doublent le stockage. espace
Le microcontrôleur RISC-V intégré prend en charge une faible consommation d'énergie et un démarrage rapide, prend en charge une capture d'image rapide de 250 ms et charge simultanément la bibliothèque de modèles AI pour réaliser la reconnaissance faciale "en une seconde"
DRAM DDR2 16 bits intégrée, capable de supporter des bandes passantes mémoire exigeantes
Intégré avec POR intégré, codec audio et MAC PHY
Spécifications
Processeur
ARM Cortex-A7, processeur monocœur 32 bits, 1,2 GHz, avec NEON et FPU
NPU
NPU Rockchip 4e génération, prend en charge int4, int8, int16 ; jusqu'à 1.0 TOPS (int4)
ISP
ISP3.2 de troisième génération, entrée jusqu'à 4 MP à 30 ips, HDR, WDR, réduction du bruit
RAM
64 Mo DDR2
Stockage
Flash SPI NAND de 128 Mo
USB
Hôte/périphérique USB 2.0 via Type-C
Interface de la caméra
MIPI CSI 2 voies
Broches GPIO
17 broches GPIO
Consommation électrique
MCU RISC-V à faible consommation pour un démarrage rapide
Dimensions
28 x 21 mm
Téléchargements
Wiki
Cette carte d'extension vous permet d'ajouter une interface RS485 et CAN à un Raspberry Pi Pico.
La carte offre également la possibilité de la faire fonctionner soit via une connexion USB-C standard de 5 V, soit via une borne à vis acceptant une tension de 6 à 12 V. La tension appliquée à la borne à vis est réduite à 5 V par un convertisseur de tension intégré à la carte.
Caractéristiques
L'alimentation peut être fournie via une connexion USB-C de 5 V ou via une borne à vis qui consomme entre 6 et 12 V. Dans ce dernier cas, un convertisseur de tension intégré réduit la tension à 5 V.
Pour augmenter la polyvalence et la gamme de fonctions, les broches de connexion du Raspberry Pi Pico ont été acheminées vers l'extérieur.
La carte d'extension offre également la possibilité de communiquer via les interfaces RS485 et CAN.
Spécifications
Interface CAN
SPI, CAN
Interface RS485
Série, RS485
Alimentation
5 V CC (USB-C)
Borne à vis
6-12 V CC
Niveau logique
3,3 V
Résistance de terminaison CAN
120 Ω (peut être activé et désactivé selon les besoins)
Résistance de terminaison RS485
120 Ω (peut être activé et désactivé selon les besoins)
Caractéristiques
Taille
23,2 x 12,5 x 22 mm
Poids
9g
Type d'engrenage
Équipement en plastique (Nylon et POM)
Angle limite
120
Palier Pas de roulements à billes
Cannelure d'engrenage de klaxon
20T (4,8 mm)
Type de klaxon
Plastique, POM
Cas
Nylon et fibre de verre
Fil de connecteur
200mm
Moteur
Moteur à balais métalliques
Résistance à l'eau
Non
Inclus
1x servomoteur FeeTech FS90
1x klaxon de servo droit à une extrémité
1x klaxon de servo droit à double extrémité
1x klaxon de servo droit à double extrémité ailé
1x klaxon de servo étoile à quatre branches
1x klaxon de servo rond
1x vis de klaxon de servo
2x vis de montage du servo FS90
Téléchargements
Mode d'emploi
La SparkFun Thing Plus Matter est la première carte facilement accessible de ce type qui combine Matter et l'écosystème Qwiic de SparkFun pour le développement agile et le prototypage de dispositifs IoT basés sur Matter. Le module sans fil MGM240P de Silicon Labs offre une connectivité sécurisée pour les deux protocoles 802.15.4 avec communication Mesh (Thread) et Bluetooth Low Energy 5.3. Le module est prêt à être intégré au protocole Matter IoT de Silicon Labs pour la domotique.
Qu'est-ce que Matter ? En termes simples, Matter permet un fonctionnement cohérent entre les appareils domestiques intelligents et les plateformes IoT sans connexion Internet, même s'ils proviennent de fournisseurs différents. Ce faisant, Matter est capable de communiquer entre les principaux écosystèmes IoT afin de créer un protocole sans fil unique, facile à utiliser, fiable et sécurisé.
La Thing Plus Matter (MGM240P) comprend des connecteurs Qwiic et de batterie LiPo, ainsi que plusieurs connecteurs GPIO capables d'un multiplexage complet par le biais d'un logiciel. La carte comprend également le chargeur LiPo monocellulaire MCP73831 ainsi que la jauge de carburant MAX17048 pour charger et surveiller une batterie connectée. Enfin, un emplacement pour carte µSD est intégré pour tout besoin de mémoire externe.
Le module sans fil MGM240P est construit autour du SoC sans fil EFR32MG24 avec un processeur ARM Cortex-M33 à 32 bits fonctionnant à 39 MHz avec 1536 kb de mémoire Flash et 256 kb de RAM. Le MGM240P fonctionne avec les protocoles sans fil 802.15.4 courants (Matter, ZigBee et OpenThread) ainsi qu'avec Bluetooth Low Energy 5.3. Le MGM240P supporte le Secure Vault de Silicon Labs pour les applications Thread.
Spécifications
Module sans fil MGM240P
Construit autour du SoC sans fil EFR32MG24
Processeur Cœur ARM Cortex-M33 32 bits (@ 39 MHz)
Mémoire flash de 1536 Ko
256 Ko de RAM
Prise en charge de plusieurs protocoles sans fil 802.15.4 (ZigBee et OpenThread)
Bluetooth Low Energy 5.3
Prêt pour Matter
Prise en charge de Secure Vault
Antenne intégrée
Facteur de forme Thing Plus (compatible avec les fibres) :
Dimensions : 5,8 x 2,3 cm (2,30 x 0,9')2 5,8 x 2,3 cm (2,30 x 0,9')
2 trous de fixation :
compatible avec les vis 4-40
21 sorties GPIO
Tous les connecteurs ont une capacité de multiplexage complète par logiciel
Interfaces SPI, I²C et UART mappées par défaut sur les connecteurs étiquetés.
13 GPIO (6 étiquetés comme analogiques, 7 étiquetés comme GPIO)
Toutes les fonctions sont soit GPIO, soit analogiques.
Convertisseur numérique-analogique intégré (DAC)
Connecteur USB-C
Connecteur de batterie LiPo JST à 2 broches pour une batterie LiPo (non incluse)
Connecteur JST Qwiic 4 broches
Chargeur LiPo monocellulaire MC73831
Taux de charge configurable (500 mA par défaut, 100 mA en alternance)
MAX17048 Jauge de carburant LiPo monocellulaire
Emplacement pour carte µSD
Faible consommation d'énergie (15 µA lorsque le MGM240P est en mode faible consommation)
LED:
PWR - LED rouge d'alimentation
CHG - Voyant jaune d'état de charge de la batterie
STAT - Voyant d'état bleu
Bouton de réinitialisation :
Bouton-poussoir physique
Le signal de réinitialisation peut être lié à A0 pour permettre une utilisation en tant que périphérique.
Téléchargements
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Datasheet (MGM240P)
Fritzing Part
Thing+ Comparison Guide
Qwiic Info Page
GitHub Hardware Repo
Si vous cherchez un moyen simple d'apprendre la soudure, ou si vous souhaitez simplement fabriquer un petit gadget que vous pourrez transporter, cet ensemble est une excellente opportunité. Stop me game est un kit éducatif qui vous apprend à souder et, à la fin, vous obtenez votre propre petit jeu. Les LED montent et descendent et votre objectif est d'appuyer sur le bouton dès que la LED verte s'allume. À chaque bonne réponse, le jeu devient un peu plus difficile – le temps dont vous disposez pour appuyer sur le bouton diminue. Combien de bonnes réponses pouvez-vous obtenir ?
Il est basé sur le microcontrôleur ATtiny404, programmé en Arduino. À l'arrière, vous trouverez une pile CR2032 qui rend le kit portable. Il y a aussi un porte-clés. Le processus de soudure est assez simple en fonction de la marque sur le PCB.
Inclus
1x carte de circuit imprimé
1x microcontrôleur ATtiny404
7x LED
1x bouton poussoir
1x interrupteur
7x résistances (330 ohms)
1x support de pile CR2032
1x pile CR2032
1x porte-clés
Ce kit contient tout le nécessaire pour commencer à apprendre à connecter l'électronique au micro:bit de manière accessible et simple. Tout est connecté à l'aide des pinces crocodiles fournies, donc aucune soudure n'est nécessaire. Inclus
MonkMakes Haut-parleur pour micro:bit
MonkMakes Switch pour micro:bit
Carte de capteur MonkMakes pour micro:bit
Jeu de cordons à pince crocodile (10 cordons)
Petit moteur avec ventilateur
Boîtier à pile AA unique (pile non incluse)
Ampoule et support
Livret (A5)
Téléchargements
Instructions
Fiche de données
Plans de cours
Le Cytron Motion 2350 Pro est un pilote de moteur CC à 4 canaux robuste (3 A par canal, 3,6-16 V) idéal pour construire des robots puissants, y compris des conceptions à roues mécanique. Il comprend des ports servo 5 V à 8 canaux, des sorties GPIO à 8 canaux, 3 ports Maker et un hôte USB pour une prise en charge plug-and-play des joysticks/manettes de jeu.
Propulsé par Raspberry Pi Pico 2, il s'intègre parfaitement à l'écosystème Pico, prenant en charge Python (MicroPython, CircuitPython), C/C++ et Arduino IDE. Préinstallé avec CircuitPython, il est livré avec un programme de démonstration et des boutons de test rapide pour une utilisation immédiate. Connectez-vous simplement via USB-C et commencez à explorer !
Inclus
1x Cytron Motion 2350 Pro contrôleur robotique
1x Câble STEMMA QT/Qwiic JST SH à 4 broches avec prises femelles (150 mm)
2x Câbles Grove vers JST-SH (200 mm)
1x Jeu de pare-chocs en silicone
4x Broches de friction pour blocs de construction
1x Mini-tournevis
Retard temporaire dans la livraison des robots Unitree
Comme de nombreux autres fournisseurs, nous rencontrons actuellement des retards dans la livraison des robots Unitree. Un envoi de notre fournisseur est actuellement bloqué en douane, ce qui entraîne un retard dans la livraison des commandes déjà passées.
Nous travaillons activement avec notre fournisseur pour résoudre ce problème et espérons obtenir plus de clarté bientôt, mais nous ne pouvons malheureusement pas garantir de délais précis pour le moment. Un nouvel envoi est également en cours d'acheminement, mais il faudra un certain temps avant qu'il n'arrive. Comme d'autres fournisseurs rencontrent les mêmes difficultés, changer de prestataire ne permettrait pas d’obtenir une solution plus rapide.
Notre priorité est d’honorer les commandes existantes. Si vous avez des questions ou souhaitez modifier votre commande, n’hésitez pas à contacter notre service client. Nous vous tiendrons informés des prochains développements.
La série Unitree Go2 se compose de robots quadrupèdes destinés à la recherche et au développement de systèmes autonomes dans les domaines de l'interaction homme-robot (HRI), du SLAM et du transport. Grâce à ses quatre pattes et à ses 12 degrés de liberté, ce robot peut évoluer sur des terrains variés. Le Go2 est équipé d'un système perfectionné de gestion de l'entraînement et de la puissance, qui permet une vitesse (selon la version) allant jusqu'à 3,7 m/s ou 11,88 km/h, avec une autonomie pouvant atteindre 4 heures. De plus, les moteurs ont un couple de 45 N.m au niveau du corps/des cuisses et des genoux, ce qui permet également des sauts ou des saltos arrière.
Caractéristiques
Système de reconnaissance ultra-performant : LIDAR 4D L1
Vitesse de course maximale : environ 5 m/s
Couple d'articulation maximal : environ 45 N.m
Module sans fil : Wi-Fi 6/Bluetooth/4G
Autonomie ultra-longue : environ 2 à 4 h (longue durée de vie mesurée en conditions réelles)
Système de suivi latéral intelligent : ISS 2.0
Spécifications
Module de suivi : Suivi automatique ou télécommandé
Caméra frontale : Résolution de transmission d'image : 1280 x 720, champ de vision : 120°, objectif ultra grand angle pour une clarté exceptionnelle.
Feu avant : Éclaire intensément la route.
LiDAR 4D L1 : Balayage omnidirectionnel ultra grand angle 360° x 90° permettant un évitement automatique avec un angle mort réduit et un fonctionnement stable.
12 moteurs d'articulation : Robuste et puissant, élégant et simple, une expérience visuelle inédite.
Microphone interphone : Communication efficace sans restriction de scénario.
Sangle auto-rétractable : Facile à transporter et à charger.
Plus stable, plus puissant grâce à des appareils avancés. LiDAR 3D, carte ESIM 4G, Wi-Fi 6 bi-bande, Bluetooth 5.2 pour une connexion stable et un contrôle à distance.
Puissant cœur de calcul : contrôleur de mouvement, processeur ARM hautes performances, processeur à algorithme d'intelligence artificielle amélioré, ORIN NX/NANO externe.
Batterie intelligente : batterie standard de 8000 mAh, batterie longue durée de 15000 mAh, protection contre les surchauffes, les surcharges et les courts-circuits.
Haut-parleur pour écouter de la musique : écoutez votre musique comme bon vous semble.
Variantes de l'Unitree Go2
Le Go2 impressionne non seulement par ses capacités techniques, mais aussi par son design moderne et fin qui lui confère un look futuriste et attire tous les regards. Le Go2 Air est spécialement conçu pour les démonstrations et les présentations. Grâce à ses fonctionnalités de base, il offre une base solide pour démontrer les capacités de mouvement et les fonctionnalités d'un robot à quatre pattes. Important : Le Go2 Air est livré sans contrôleur. Celui-ci est disponible en option.
Équipés d'un puissant processeur 8 cœurs hautes performances, les modèles Pro et Edu offrent une puissance de calcul impressionnante, indispensable aux tâches complexes et aux calculs exigeants. Cela permet un traitement des données plus rapide et plus efficace, faisant des modèles Pro et Edu des partenaires fiables pour vos projets.
À partir de la version Edu, le Go2 est programmable et offre des possibilités infinies pour le développement et la recherche de vos propres applications robotiques. Le Go2 est également capable de gérer une hauteur de marche allant jusqu'à 14 cm. Cela en fait un outil idéal pour la recherche, l'éducation et l'initiation au monde de la robotique.
Le Go2 Edu est livré avec une télécommande pour un contrôle simple et intuitif. Il dispose également d'une station d'accueil d'une puissance de calcul impressionnante de 100 TOPS, équipée de puissants algorithmes d'IA et d'une assistance technique.
Le Go2 Edu est équipé d'une puissante batterie de 15000 mAh qui lui confère une autonomie impressionnante allant jusqu'à 4 heures. Cette longue durée de fonctionnement permet au robot d'effectuer des missions d'exploration plus longues et d'accomplir des tâches exigeantes.
Comparaison des modèles
Air
Pro
Edu/Edu Plus
Dimensions (debout)
70 x 31 x 40 cm
70 x 31 x 40 cm
70 x 31 x 40 cm
Dimensions (accroupi)
76 x 31 x 20 cm
76 x 31 x 20 cm
76 x 31 x 20 cm
Matériau
Alliage d'aluminium + Plastique technique haute résistance
Alliage d'aluminium + Plastique technique haute résistance
Alliage d'aluminium + Plastique technique haute résistance plastique
Poids (avec batterie)
environ 15 kg
environ 15 kg
environ 15 kg
Tension
28~33,6 V
28~33,6 V
28~33,6 V
Puissance de pointe
environ 3000 W
environ 3000 W
Charge utile
≈7 kg (MAX ~ 10 kg)
≈8 kg (MAX ~ 10 kg)
≈8 kg (MAX ~ 12 kg)
Vitesse
0~2,5 m/s
0~3,5 m/s
0~3,7 m/s (MAX ~ 5 m/s)
Hauteur de montée/chute max.
environ 15 cm
environ 16 cm
environ 16 cm
Angle de montée max.
30°
40°
40°
Puissance de calcul de base
N/A
8 cœurs hautes performances Processeur
Processeur 8 cœurs hautes performances
Moteur d'articulation du genou en aluminium
Ensemble de 12
Ensemble de 12
Ensemble de 12
Circuit intra-articulaire (genou)
✓
✓
✓
Refroidisseur de caloduc articulaire
✓
✓
✓
Amplitude de mouvement
Corps : −48~48°
Corps : −48~48°
Corps : −48~48°
Cuisse : −200°~90°
Cuisse : −200°~90°
Cuisse : −200°~90°
Jarret : −156°~−48°
Jarret : −156°~−48°
Couple max.
N/A
Environ 45 N.m
Environ 45 N.m
LiDAR 3D super grand-angle
✓
✓
✓
Module de suivi de positionnement vectoriel sans fil
N/A
✓
✓
Grand angle HD Caméra
✓
✓
✓
Capteur de force côté pied
N/A
N/A
✓
Action de base
✓
✓
✓
Sangle de mise à l'échelle automatique
N/A
✓
N/A
OTA intelligent amélioré
✓
✓
✓
Transmission d'images RTT 2.0
✓
✓
✓
Télécommande de base via l'application
✓
✓
✓
Visualisation des données via l'application
✓
✓
✓
Programme graphique via l'application
✓
✓
✓
Lampe frontale (3) W)
✓
✓
✓
Wi-Fi 6 double bande
✓
✓
✓
Bluetooth 5.2/4.2/2.1
✓
✓
✓
Module 4G
N/A
CN/GB
CN/GB
Voix Fonction
N/A
✓
✓
Lecture musicale
N/A
✓
✓
Système intelligent de suivi latéral ISS 2.0
N/A
✓
✓
Détection et évitement intelligents
✓
✓
✓
Secondaire Développement
N/A
N/A
✓
Contrôleur manuel
En option
En option
✓
Module haute puissance de calcul
N/A
N/A
Edu : 40 TOPS de puissance de calcul
Edu Plus : 100 TOPS de puissance de calcul
NVIDIA Jetson Orin (en option)
Smart Batterie
Standard (8000 mAh)
Standard (8000 mAh)
Longue autonomie (15000 mAh)
Autonomie
1 à 2 h
1 à 2 h
2 à 4 h
Chargeur
Standard (33,6 V, 3,5 A)
Standard (33,6 V, 3,5 A)
Charge rapide (33,6 V, 9 A)
Inclus
1x Unitree Go2 Pro
1x Unitree Go2 batterie (8000 mAh)
Téléchargements
Documentation
iOS/Android apps
GitHub
Le Raspberry Pi AI HAT+ est une carte d'extension conçue pour le Raspberry Pi 5, dotée d'un accélérateur Hailo AI intégré. Ce module complémentaire offre une approche rentable, efficace et accessible pour intégrer des capacités d'IA hautes performances, avec des applications couvrant le contrôle des processus, la sécurité, la domotique et la robotique.
Disponible dans des modèles offrant 13 ou 26 téra-opérations par seconde (TOPS), l'AI HAT+ est basé sur les accélérateurs de réseaux neuronaux Hailo-8L et Hailo-8. Ce modèle 13 TOPS prend en charge efficacement les réseaux de neurones pour des tâches telles que la détection d'objets, la segmentation sémantique et d'instance, l'estimation de pose, etc. La variante 26 TOPS s'adapte à des réseaux plus grands, permet un traitement plus rapide et est optimisée. pour exécuter plusieurs réseaux simultanément.
L'AI HAT+ se connecte via l'interface PCIe Gen3 du Raspberry Pi 5. Lorsque le Raspberry Pi 5 exécute une version actuelle du système d'exploitation Raspberry Pi, il détecte automatiquement l'accélérateur Hailo intégré, rendant l'unité de traitement neuronal (NPU) disponible pour les tâches d'IA. De plus, les applications de caméra rpicam-apps incluses dans Raspberry Pi OS prennent en charge de manière transparente le module AI, en utilisant automatiquement le NPU pour les fonctions de post-traitement compatibles.
Inclus
Raspberry Pi AI HAT+ (13 TOPS)
Kit de matériel de montage (entretoises, vis)
Embase d'empilage GPIO 16 mm
Téléchargements
Datasheet
Distribution de pâte à souder et fusion tout-en-un
Le Voltera V-One permet de créer des circuits imprimés prototypes à deux couches sur votre bureau. Vous introduisez les fichiers Gerber et vous obtenez PCB. Le distributeur dépose une encre conductrice à base d’argent pour imprimer votre circuit devant vos yeux. L’assemblage de cartes est facile grâce aux fonctions de distribution de pâte à souder et de refusion de la V-One. Il suffit de monter votre carte sur le support d’impression et d’importer votre fichier Gerber dans le logiciel de Voltera.
Plus besoin de pochoir
Le logiciel de Voltera est conçu pour être utilisé facilement. De l’importation de vos fichiers Gerber au moment où vous appuyez sur le bouton d’impression, le logiciel vous guide en toute sécurité à chaque étape.
Compatible avec EAGLE, Altium, KiCad, Mentor Graphics, Cadence, DipTrace, Upverter.
L’imprimante de PCB de bureau V-One comprend tous les accessoires et les produits consommables nécessaires pour démarrer :
Matériaux consommables
1 Conducteur 2 cartouche
1 cartouche de pâte à souder
10 substrats FR4 2"x3" FR4
6 substrats FR4 3"x4"
10 substrats FR1 2"x3"
6 substrats FR1 3"x4" FR1
25 buses jetables de 230 microns
1 tampon de polissage
1 bobine de fil de soudure
1 jeu d'embouts de perçage
200 rivets de 0,4 mm
200 rivet de 1,0 mm
2 outils à rivets
1 couche sacrificieller
1 kit de démarrage Hello World
1 kit de démarrage Punk Console
Accessoires
2 attaches de substrat et vis
2 distributeurs avec bouchons
1 sonde
1 perceuse
1 lunettes de protection
1 brucelles antistatiques Voltera
Téléchargements
Specifications
Logiciel V-One
Manuels d'utilisation
Fiches techniques de sécurité
Fiches techniques
Fichier Voltera CAM pour EAGLE
Substrats et modèles
Plus d'information
FAQ
Plus d'informations de la communauté Voltera
Caractéristiques techniques
Spécifications d'impression
Largeur minimale des tracés
0,2 mm
Dimension passive minimale
1005
Pas minimum de broche à broche (encre conductrice)
0,8 mml
Pas minimum broche à broche (pâte à souder)
0,5 mml
Résistivité
12 mΩ/sq @ 70 um hauteur
Matériau du substrat
FR4
Épaisseur maximale de la carte
3 mm
Spécifications de soudure
Alliage de pâte à souder
Sn42/Bi57.6/Ag0.4
Alliage de fils de soudure
SnBiAg1
Température du fer à souder
180-210 °C
Lit d'impression
Surface d'impression
135 x 113,5 mm
Température maximale du lit chauffé
240 °C
Taux de rampe du lit chauffé
~2°C/s
Empreinte digitale
Dimensions
390 x 257 x 207 mm (L x W x H)
Poids
7 kg
Exigences du système
Systèmes d'exploitation compatibles
Windows 7 ou plus, MacOS 10.11 ou plusr
Format de fichier compatible
Gerber
Type de connexion
USB câblé
Certification
EN 61326-1:2013
EMC requirements
IEC 61010-1
Exigences de sécurité
Marquage CE
Apposé sur les imprimantes Voltera V-One livrées aux clients européens
Conçue et assemblée au Canada.
Plus de détails techniques
Quickstart
Explore Flexible Printed Electronics on the V-One
Voltera V-One Capabilities Reel
Voltera V-One PCB Printer Walkthrough
Unpacking the V-One
V-One: Solder Paste Dispensing and Reflow All-in-One
Voltera @ Stanford University's Bao Research Group: Robotic Skin and Stretchable Sensors
Voltera @ Princeton: The Future of Aerospace Innovation
'À bord de chaque moto:bit se trouvent plusieurs broches d’E/S, ainsi qu’un connecteur Qwiic vertical, capable de brancher des servomoteur, des capteurs et d’autres circuits. En appuyant sur le bouton, vous pouvez faire bouger votre micro:bit ! Le moto:bit se connecte au micro:bit via un SMD mis à jour, connecteur de bord en haut de la carte, ce qui facilite la configuration. Cela crée un moyen pratique d’échanger micro:bits pour la programmation tout en fournissant des connexions fiables à toutes les différentes broches sur le micro:bit. Nous avons également inclus un connecteur d’alimentation coaxial de base sur la moto:bit qui est capable de fournir de l’énergie à tout ce que vous connectez à la carte de support. Caractéristiques : Connecteur Edge plus fiable pour une utilisation facile avec le micro:bit Full H-Bridge pour la commande de deux moteurs Commande des servomoteurs Connecteur Qwiic vertical Port I2C pour étendre les fonctionnalités Gestion de l’alimentation et de la batterie à bord pour le micro:bit'
Le HT-M00 est une passerelle double canal spécialement conçue pour répondre aux applications LoRa de la famille intelligente qui fonctionnent avec moins de 30 nœuds LoRa. La passerelle a été construite autour de deux puces SX1276 pilotées par ESP32. Pour permettre la surveillance du facteur d'étalement SF7~SF12 de 125 kHz, un mélangeur logiciel a été développé, communément appelé programme de simulation en bande de base.
Le mélangeur logiciel est un composant essentiel qui permet à la passerelle HT-M00 de fonctionner avec une grande efficacité. Il est conçu pour simuler des signaux en bande de base, qui sont ensuite mélangés aux signaux radiofréquence pour produire le résultat souhaité. Le mélangeur logiciel a été développé avec beaucoup de soin et de précision, et a été soumis à des tests rigoureux pour garantir qu'il est capable de fournir des résultats précis et fiables.
Caractéristiques
ESP32 + SX1276
Émule les démodulateurs LoRa
Le facteur d'étalement du spectre adaptatif automatique, SF7 à SF12 pour chaque canal, est facultatif
Sortie maximale : 18 ±1 dBm
Prise en charge du protocole LoRaWAN Classe A et Classe C
Spécifications
MCU
ESP32-D0WDQ6
Jeu de puces LoRa
SX1276
Bande LoRa
863~870 MHz
Tension d'alimentation
5 V
Sensibilité de réception
-110 dBm à 300 bps
Interface
USB-C
Max. Puissance d'émission
17dB ±1dB
Température de fonctionnement
−20~70°C
Dimensions
30 x 76 x 14 mm
Inclus
1x HT-M00 Passerelle LoRa à 2 canaux
1x Support mural
1x Câble USB-C
Downloads
Manual
Software
Documentation
Cette catégorie offre un large éventail de plateformes parmi lesquelles choisir. Ils ont tous des fonctionnalités différentes et vous pouvez choisir la plateforme qui correspond le mieux à vos besoins ou à votre projet.