L'OKdo E1 est une carte de développement à très faible coût basée sur le microcontrôleur Arm Cortex-M33 double cœur NXP LPC55S69JBD100. La carte E1 est parfaite pour l'IoT industriel, le contrôle et l'automatisation des bâtiments, l'électronique grand public et les applications générales intégrées et sécurisées.
Caractéristiques
Processeur avec Arm TrustZone, unité à virgule flottante (FPU) et unité de protection de la mémoire (MPU)
Coprocesseur CASPER Crypto pour permettre l'accélération matérielle de certains algorithmes cryptographiques asymétriques
Accélérateur matériel PowerQuad pour les fonctions DSP à virgule fixe et flottante
Fonction physique non clonable (PUF) SRAM pour la génération, le stockage et la reconstruction de clés
Module PRINCE pour le cryptage et le décryptage en temps réel des données flash
Moteurs AES-256 et SHA2
Jusqu'à neuf interfaces Flexcomm. Chaque interface Flexcomm peut être sélectionnée par logiciel pour être une interface USART, SPI, I²C et I²S
Contrôleur hôte/périphérique USB 2.0 haute vitesse avec PHY sur puce
Contrôleur hôte/périphérique USB 2.0 pleine vitesse avec PHY sur puce
Jusqu'à 64 GPIO Interface de carte d'entrée/sortie numérique sécurisée (SD/MMC et SDIO)
Caractéristiques
Microcontrôleur flash LPC55S69JBD100 640 Ko
Débogueur CMSIS-DAP v1.0.7 intégré basé sur LPC11U35
La PLL interne prend en charge un fonctionnement jusqu'à 100 MHz, 16 MHz peuvent être montés pour un fonctionnement complet à 150 MHz.
SRAM 320 Ko
Cristal 32 kHz pour horloge en temps réel
4 commutateurs utilisateur
LED 3 couleurs
Connecteur USB utilisateur
Connecteurs d'extension 2 voies 16 voies
UART sur port COM virtuel USB
LuckFox Pico Mini est une micro-carte de développement Linux compacte basée sur la puce Rockchip RV1103, offrant une plate-forme de développement simple et efficace pour les développeurs. Il prend en charge une variété d'interfaces, notamment MIPI CSI, GPIO, UART, SPI, I²C, USB, etc., ce qui est pratique pour un développement et un débogage rapides.
Caractéristiques
Cœur ARM Cortex-A7 monocœur 32 bits avec NEON et FPU intégrés
Le NPU de 4e génération intégré, développé par Rockchip, offre une précision de calcul élevée et prend en charge la quantification hybride int, int8 et int16. La puissance de calcul d'int8 est de 0,5 TOPS, et jusqu'à 1,0 TOPS avec int4
ISP3.2 de troisième génération intégré et auto-développé, prend en charge 4 mégapixels, avec plusieurs algorithmes d'amélioration et de correction d'image tels que HDR, WDR, réduction du bruit à plusieurs niveaux, etc.
Offre de puissantes performances d'encodage, prend en charge le mode d'encodage intelligent et l'économie de flux adaptative en fonction de la scène, permet d'économiser plus de 50% du débit binaire du mode CBR conventionnel afin que les images de la caméra soient en haute définition avec une taille plus petite, et doublent le stockage. espace
Le microcontrôleur RISC-V intégré prend en charge une faible consommation d'énergie et un démarrage rapide, prend en charge une capture d'image rapide de 250 ms et charge simultanément la bibliothèque de modèles AI pour réaliser la reconnaissance faciale "en une seconde"
DRAM DDR2 16 bits intégrée, capable de supporter des bandes passantes mémoire exigeantes
Intégré avec POR intégré, codec audio et MAC PHY
Spécifications
Processeur
ARM Cortex-A7, processeur monocœur 32 bits, 1,2 GHz, avec NEON et FPU
NPU
NPU Rockchip 4e génération, prend en charge int4, int8, int16 ; jusqu'à 1.0 TOPS (int4)
ISP
ISP3.2 de troisième génération, entrée jusqu'à 4 MP à 30 ips, HDR, WDR, réduction du bruit
RAM
64 Mo DDR2
Stockage
Flash SPI NAND de 128 Mo
USB
Hôte/périphérique USB 2.0 via Type-C
Interface de la caméra
MIPI CSI 2 voies
Broches GPIO
17 broches GPIO
Consommation électrique
MCU RISC-V à faible consommation pour un démarrage rapide
Dimensions
28 x 21 mm
Téléchargements
Wiki
Utilisez le bon outil pour le bon travail. Ces piquets en acier sont utilisés pour presser les rivets sur le circuit imprimé après le perçage des trous.
Ils ont été conçus pour une performance optimale sur l'encre et assurent une connexion électrique entre les couches supérieures et inférieures de votre PCB.
Apprenez à les utiliser ici.
Pimoroni Pico LiPo est alimenté et programmable via USB-C et est livré avec 16 Mo de flash QSPI (XiP). Avec le connecteur Qwiic/STEMMA QT, vous pouvez connecter toute une série de capteurs et de sorties différents, ainsi qu'un connecteur de débogage si vous souhaitez effectuer votre programmation à l'aide d'un débogueur SWD. Il y a un bouton marche/arrêt et un bouton BOOTSEL, qui peuvent également être utilisés comme interrupteur utilisateur. Pimoroni Pico LiPo dispose également d'une gestion de batterie LiPo/LiIon intégrée – le circuit de charge intégré signifie que charger votre batterie est aussi simple que de brancher votre Pimoroni Pico Lipo via USB. Deux voyants LED connectés au circuit de la batterie vous tiennent informé de l'état marche/arrêt et de l'état de charge et il est compatible avec toutes nos batteries LiPo, LiIon et LiPo haute capacité.
Programmable avec C++, MicroPython ou CircuitPython, Pimoroni Pico LiPo est la centrale parfaite pour vos projets portables.
Caractéristiques
Alimenté par RP2040
Double ARM Cortex M0+ fonctionnant jusqu'à 133 MHz
264 Ko ou SRAM
16 Mo de mémoire flash QSPI prenant en charge XiP
Chargeur MCP73831 avec courant de charge 215 mA ( fiche technique )
Protecteur de batterie XB6096I2S ( fiche technique )
Connecteur USB-C pour l'alimentation, la programmation et le transfert de données
Connecteur Qw-ST (Qwiic / STEMMA QT) 4 broches
Connecteur de débogage à 3 broches (JST-SH)
Connecteur batterie JST PH 2 pôles, avec polarité marquée sur la carte
Commutateur pour l'entrée de base (double la sélection DFU au démarrage)
Bouton d'alimentation
Indicateurs LED d'alimentation, de charge et d'utilisateur
Régulateur 3V3 intégré (sortie de courant maximale du régulateur 600 mA)
Plage de tension d'entrée 3 - 5,5 V
Compatible avec les modules complémentaires Raspberry Pi Pico
Dimensions : environ 53 x 21 x 8 mm (L x L x H, connecteurs compris)
Téléchargements
CircuitPython
Guide de démarrage avec CircuitPython
Cette mémoire flash vous permet de stocker et de lire des données en externe via l'interface SPI de votre microcontrôleur. La commande du module est exactement la même qu'avec une carte SD classique et est donc simple. Le module est particulièrement adapté aux installations mobiles, où les cartes SD normales pourraient glisser hors du support de la carte SD. Caractéristiques Caractéristique spéciale Fonctionnement en 3 V et 5 V grâce au convertisseur de tension intégré Tension d'alimentation Vcc 3-5 V Niveau logique Vcc Interface SPI Mémoire 512 MB Fréquence d'horloge Jusqu’à 50 MHz Dimensions 18 x 22 x 12 mm Poids 3 g
L'AD584 module de référence de tension 4 canaux est conçu pour fournir des tensions de référence stables et précises de 2,5 V, 5 V, 7,5 V et 10 V. Il intègre le circuit intégré AD584, reconnu pour sa grande précision et sa stabilité.
Caractéristiques
Tension de sortie multiple : Le module peut fournir quatre tensions de référence différentes (2,5 V, 5 V, 7,5 V et 10 V) accessibles via un seul port.
Commutation par microcontrôleur : Un microcontrôleur embarqué facilite la commutation entre les quatre sorties de tension, des voyants LED indiquant la sélection active.
Fonctionnement convivial : Un seul bouton permet de parcourir facilement les tensions de référence disponibles.
Boîtier transparent : Le module est protégé par un boîtier transparent, permettant aux utilisateurs de visualiser les composants internes.
Options d'alimentation : Il peut être alimenté par une batterie au lithium intégrée (non incluse) ou par une entrée 5 V CC. Un indicateur de charge fournit des mises à jour de l'état pendant la charge.
Interface de sortie : Équipée de fiches bananes de 4 mm pour des connexions sûres et fiables.
Inclus
1x AD584 Module de référence de tension à 4 canaux avec boîtier
Téléchargements
Datasheet
Le boîtier Raspberry Pi A+ a été conçu pour s'adapter à la fois au Pi 3 modèle A+ et au Pi 1 modèle A+.
La construction ABS de haute qualité se compose de deux parties. La base présente des découpes pour permettre l'accès à la carte microSD et aux ports HDMI, audio/vidéo et USB, ainsi qu'au connecteur d'alimentation.
Raspberry Pi Pico EVB combiné avec le WizFi360-PA
WizFi360-EVB-Pico est basé sur Raspberry Pi RP2040 et ajoute une connectivité Wi-Fi à l'aide de WizFi360. Il est compatible avec la carte Raspberry Pi Pico et peut être utilisé pour le développement de solutions IoT.
Caractéristiques
Microcontrôleur RP2040 avec 2 Mo de Flash
Cortex double cœur M0+ jusqu'à 133 MHz
SRAM multibanque hautes performances de 264 Ko
Flash externe Quad-SPI avec eXecute In Place (XIP)
Comprend WizFi360-PA
Prend en charge les protocoles Internet câblés : TCP, UDP, WOL sur UDP, ICMP, IGMPv1/v2, IPv4, ARP, PPPoE
Wi-Fi 2,4 G, 802.11 b/g/n
Modes de fonctionnement de la Station de support / SoftAP / SoftAP+Station
Prise en charge des modes « Passage de données » et « Transfert de données de commande AT »
Prise en charge de la configuration des commandes série AT
Prise en charge du mode de fonctionnement serveur TCP/Client TCP/UDP
Configuration de support du canal d'exploitation 0 ~ 13
Prise en charge automatique de la bande passante de 20 MHz/40 MHz
Prise en charge du cryptage WPA_PSK/WPA2_PSK
Prise en charge de l'adresse MAC unique intégrée et configurable par l'utilisateur
Qualité industrielle (plage de température de fonctionnement : -40°C ~ 85°C)
Certification CE, FCC
Comprend une mémoire flash de 16 Mbits
Port micro-USB B pour l'alimentation et les données (et pour reprogrammer le Flash)
PCB à 40 broches 21 × 51 de style « DIP » de 1 mm d'épaisseur avec broches traversantes de 0,1' également avec créneaux de bord
Port de débogage de fil série ARM (SWD) à 3 broches
LDO intégré
Téléchargements
Documentation
W6100-EVB-Pico est une carte d'évaluation de microcontrôleur basée sur le Raspberry Pi RP2040 et le contrôleur TCP/IP W6100 entièrement câblé - et fonctionne essentiellement de la même manière que la carte Raspberry Pi Pico, mais avec une connectivité Ethernet supplémentaire via W6100. Caractéristiques Microcontrôleur RP2040 avec 2 Mégaoctets de mémoire flash Processeur double cœur Cortex M0+ jusqu'à 133 MHz 264 kégaoctets de SRAM multi-banque à haute performance Flash externe Quad-SPI avec exécution en place (XIP) Fabrication de bus à barres croisées à haute performance 30 E/S polyvalentes (dont 4 peuvent être utilisées pour l'ADC) Tension d'E/S de 1,8 à 3,3 V (Remarque : la tension d'E/S de la Pico est fixée à 3,3 V) Convertisseur analogique-numérique (CAN) 12 bits 500 ksps Divers périphériques numériques 2x UART, 2x I²C, 2x SPI, 16 canaux PWM 1x Minuterie avec 4 alarmes, 1x Compteur en temps réel 2 blocs E/S programmables (PIO), 8 machines à états au total E/S à haute vitesse flexibles et programmables par l'utilisateur Peut émuler des interfaces telles que la carte SD et la VGA Comprend W6100 Prend en charge les protocoles Internet câblés : TCP, UDP, IPv6, IPv4, ICMPv6, ICMPv4, IGMP, MLDv1, ARP, PPPoE Prend en charge 8 SOCKETs indépendants simultanément avec 32 ko de mémoire 16 ko de mémoire interne pour les tampons d'émission/réception Interface SPI Port micro-USB B pour l'alimentation et les données (et pour reprogrammer la mémoire flash) Carte PCB de style 'DIP' de 40 broches de 21x51 mm d'épaisseur 1 mm avec des broches traversantes de 0,1' et des crénelures sur les bords Port de débogage série à fil ARM 3 broches (SWD) PHY Ethernet 10/100 intégré Prise en charge de la négociation automatique Duplex complet / demi-duplex 10/100 Mbit/s RJ45 intégré (RB1-125BAG1A) Régulateur de tension intégré (LM8805SF5-33V) Téléchargements Documents Démarrage sur GitHub Micrologiciel
Le contrôleur de température du thermostat numérique intelligent est un petit contrôleur de commutateur (77 x 51 mm) qui vous permet de créer votre propre thermostat. Avec son capteur NTC et ses afficheurs LED, vous pouvez commuter jusqu'à 10A 220V en fonction de la température mesurée.
Cette carte support combine un écran TFT 2.4', six DEL adressables, un régulateur de tension intégré, un connecteur IO à 6 broches et une fente microSD avec la fente de connecteur M.2 broches afin qu’elle puisse être utilisée avec les cartes de processeur compatibles dans notre écosystème MicroMod. Nous avons également installé sur cette carte porteuse l’ATtiny84 d’Atmel avec 8Ko de flash programmable. Ce petit gars est préprogrammé pour communiquer avec le processeur sur I2C pour lire les boutons pressés. Caractéristiques : Connecteur MicroMod M.2 240 x 320 pixels, écran TFT 2,4' 6 DEL APA102 adressables Buzzer magnétique Connecteur USB-C Régulateur de tension 3,3 V 1 A Connecteur Qwiic Boutons de démarrage/réinitialisation Circuit de batterie et de charge de secours du CCF microSD Phillips #0 M2.5 x 3 mm vis incluse
Vous avez besoin d'un moyen de relier les couches supérieure et inférieure ? Les rivets sont la solution !Les rivets sont de petits tubes de cuivre qui établissent une connexion mécanique entre la couche supérieure et la couche inférieure. Nous avons trouvé que les rivets étaient le moyen le plus facile de créer des vias. N'oubliez pas de vous procurer l'outil à rivets correspondante si vous n'en avez pas !Paquet de 200Diamètre intérieur 1,0 mmDiamètre de la tête : 2,2 mmTaille du foret : 1,5 mm (ou 1,6 mm)Vous ne savez pas comment les utiliser ? Consultez notre tutoriel ici.
Si vous cherchez un moyen simple d'apprendre la soudure, ou si vous souhaitez simplement fabriquer un petit gadget que vous pourrez transporter, cet ensemble est une excellente opportunité. Stop me game est un kit éducatif qui vous apprend à souder et, à la fin, vous obtenez votre propre petit jeu. Les LED montent et descendent et votre objectif est d'appuyer sur le bouton dès que la LED verte s'allume. À chaque bonne réponse, le jeu devient un peu plus difficile – le temps dont vous disposez pour appuyer sur le bouton diminue. Combien de bonnes réponses pouvez-vous obtenir ?
Il est basé sur le microcontrôleur ATtiny404, programmé en Arduino. À l'arrière, vous trouverez une pile CR2032 qui rend le kit portable. Il y a aussi un porte-clés. Le processus de soudure est assez simple en fonction de la marque sur le PCB.
Inclus
1x carte de circuit imprimé
1x microcontrôleur ATtiny404
7x LED
1x bouton poussoir
1x interrupteur
7x résistances (330 ohms)
1x support de pile CR2032
1x pile CR2032
1x porte-clés
Le Sparkfun Qwiic GPIO est un appareil I²C basé sur le TCA9534 I/O Expander IC de Texas Instruments. La carte ajoute huit broches IO que vous pouvez lire et écrire comme n’importe quelle autre broche numérique sur votre contrôleur. Les détails de l’interface I²C ont été pris en compte dans une bibliothèque Arduino afin que vous puissiez appeler des fonctions similaires à pinMode et digitalWrite d’Arduino, vous permettant de vous concentrer sur votre création ! Les broches du TCA9534 sont des bornes de verrouillage faciles à utiliser; ne jamais visser un autre fil à cette place! Les bornes sont relativement spacieuses elles-mêmes, alors n’hésitez pas à fixer plusieurs fils dans une borne de terre ou d’alimentation. Avec trois cavaliers d’adresse personnalisables, vous pouvez avoir jusqu’à huit cartes GPIO Qwiic connectées sur un seul bus permettant jusqu’à 64 broches GPIO supplémentaires ! L’I²C par défaut est 0x27 et peut être modifié en ajustant les cavaliers sur le dos de la carte. Caractéristiques : Huit broches GPIO configurables disponibles Adresse I2C : 0x27 (par défaut) Les broches d’adresse permettent d’utiliser jusqu’à huit cartes sur un seul bus Registre d’inversion de polarité d’entrée Contrôler chaque broche d’E/S individuellement ou en même temps Sortie Open-Drain Active-Low Interrupt Output 2 x connecteurs Qwiic Dimensions : 60,96 mm x 38,10 mm
Cette version radio 900 MHz peut être utilisée pour l'émission/réception à 868 MHz ou à 915 MHz ? la fréquence radio exacte est déterminée lorsque vous chargez le logiciel puisqu'elle peut être réglée de façon dynamique.
Au c?ur du Feather 32u4 se trouve un ATmega32u4 cadencé à 8 MHz et à 3,3 V logique. Cette puce a 32 K de flash et 2 K de RAM, avec USB intégré, non seulement a une capacité de débogage de programme vec USB vers série intégrée sans avoir besoin d'une puce de type FTDI, mais elle peut également faire office de souris, de clavier, de dispositif MIDI USB, etc.
Pour faciliter son utilisation dans le cadre de projets portables, nous avons ajouté un connecteur pour n'importe quelle batterie lithium-polymère de 3,7 V et intégré la charge de la batterie. Vous n'avez pas besoin de batterie, il fonctionnera très bien directement à partir du connecteur micro USB. Mais, si vous avez une batterie, vous pouvez la porter avec vous, puis brancher le connecteur USB pour la recharger. Le Feather basculera automatiquement vers l'alimentation USB dès qu'elle sera disponible. Nous avons également lié la batterie à travers un diviseur à une broche analogique, de sorte que vous pouvez mesurer et surveiller la tension de la batterie pour savoir quand vous avez besoin de la recharger.
Caractéristiques
Dimension 2,0 x 0,9 x 0,28 pouce (51 x 23 x 8 mm) sans les connecteurs soudées
Léger comme une ( grande ?) plume - 5,5 g
ATmega32u4 @ 8 MHz avec logique/alimentation 3.3 V
Régulateur 3,3 V avec sortie de courant de crête de 500 mA
Prise en charge de l'USB, livré avec un bootloader USB et débogage via port série
Vous obtenez également des tonnes de broches - 20 broches GPIO
Interface série, I²C, SPI
7x broches PWM
10x entrées analogiques
Chargeur lipoly intégré de 100 mA avec LED d'indication de l'état de charge
Pin #13 LED rouge pour le clignotement à usage général
Broche d'alimentation/activation
4 trous de montage
Bouton de réinitialisation
La radio Feather 32u4 utilise l'espace restant pour ajouter un module radio RFM69HCW 868/915 MHz. Ces radios ne sont pas bonnes pour transmettre de l'audio ou de la vidéo, mais elles fonctionnent assez bien pour la transmission de petits paquets de données lorsque vous avez besoin de plus de portée que 2,4 GHz (BT, BLE, WiFi, ZigBee)
Module basé sur le SX1231 avec interface SPI
Radiocommunication par paquets avec des bibliothèques Arduino prêtes à l'emploi
Utilise la bande ISM non soumise a des reglementation ("ISM européen" @ 868 MHz ou "ISM américain" @ 915 MHz)
+13 à +20 dBm jusqu'à 100 mW de capacité de sortie de puissance (sortie de puissance sélectionnable par le logiciel)
Appel de courant de 50 mA (+13 dBm) à 150 mA (+20 dBm) pour les transmissions
Portée d'environ 350 mètres, selon les obstructions, la fréquence, l'antenne et la puissance de sortie
Créer des réseaux multipoints avec des adresses de n?uds individuels
Moteur de paquets cryptés avec AES-128
Antenne filaire simple ou point pour connecteur uFL
Il est livré entièrement assemblé et testé, avec un bootloader USB qui vous permet de l'utiliser rapidement avec l'IDE Arduino. Des connecteurs sont également incluses pour que vous puissiez le souder et le brancher sur une platine d'essai sans soudure. Vous devrez couper et souder un petit morceau de fil (n'importe quel conducteur solide ou toronné est parfait) afin de créer votre antenne.
La batterie Lipoly et le câble USB ne sont pas inclus.
Raspberry Pi 5 fournit deux connecteurs MIPI à quatre voies, chacun pouvant prendre en charge une caméra ou un écran. Ces connecteurs utilisent le même format FPC « mini » à 22 voies au pas de 0,5 mm que le kit de développement de module de calcul et nécessitent des câbles adaptateurs pour se connecter aux connecteurs au format « standard » à 15 voies au pas de 1 mm du Raspbery Pi actuel. produits d'appareil photo et d'affichage.
Ces câbles adaptateurs mini vers standard pour caméras et écrans (notez qu'un câble de caméra ne doit pas être utilisé avec un écran, et vice versa) sont disponibles en longueurs de 200 mm, 300 mm et 500 mm.
L'injecteur PoE+ pour Raspberry Pi ajoute la fonctionnalité Power-over-Ethernet (PoE) à un seul port d'un commutateur Ethernet non PoE, fournissant à la fois l'alimentation et les données via un seul câble Ethernet. Il offre une solution plug-and-play et économique pour introduire progressivement la fonctionnalité PoE dans les réseaux Ethernet existants.
L'injecteur PoE+ est un appareil monoport de 30 W, adapté à l'alimentation des équipements conformes aux normes IEEE 802.3af et 802.3at, y compris toutes les générations de HAT PoE pour Raspberry Pi. Il prend en charge des débits réseau de 10/100/1000 Mbit/s.
Remarque : Un câble secteur IEC séparé est requis pour le fonctionnement (non fourni).
Spécifications
Débit de données
10/100/1000 Mbit/s
Tension d'entrée
100 à 240 V CA
Puissance de sortie
30 W
Puissance de sortie sur les broches
4/5 (+), 7/8 (–)
Tension de sortie nominale
55 V CC
Connecteurs de données
RJ-45 blindé, EIA 568A et 568B
Connecteur d'alimentation
Entrée secteur IEC c13 (non fournie)
Humidité de stockage
Maximum 95%, sans condensation
Altitude de fonctionnement
–300 m à 3000 m
Température ambiante de fonctionnement
10°C à +50°C
Dimensions
159 x 51,8 x 33,5 mm
Téléchargements
Datasheet
Maker Line est un capteur de ligne doté d'un réseau de 5 capteurs IR capable de suivre des lignes de 13 mm à 30 mm de largeur.
L'étalonnage du capteur a également été simplifié. Il n'est pas nécessaire d'ajuster le potentiomètre pour chaque capteur IR. Il vous suffit d'appuyer sur le bouton de calibrage pendant 2 secondes pour accéder au mode de calibrage. Ensuite, vous devez faire glisser les capteurs sur la ligne, appuyer à nouveau sur le bouton et vous êtes prêt à partir.
Les données d'étalonnage sont stockées dans l'EEPROM et restent intactes même lorsque le capteur est éteint. L'étalonnage ne doit donc être effectué qu'une seule fois, sauf si la hauteur du capteur, la couleur de la ligne ou la couleur de fond ont changé.
Maker Line prend également en charge deux sorties : 5 sorties numériques pour l'état de chaque capteur indépendamment, ce qui est similaire au capteur IR classique, mais vous bénéficiez d'un étalonnage facile, et également une sortie analogique, où la tension représente la position de la ligne. La sortie analogique offre également une résolution plus élevée par rapport aux sorties numériques séparées. Ceci est particulièrement utile lorsqu’une grande précision est requise lors de la construction d’un robot suiveur de ligne avec contrôle PID.
Caractéristiques
Tension de fonctionnement : compatible DC 3,3 V et 5 V (avec protection contre l'inversion de polarité)
Largeur de trait recommandée : 13 mm à 30 mm
Couleur de ligne sélectionnable (claire ou foncée)
Distance du capteur (hauteur) : 4 mm à 40 mm (Vcc = 5 V, ligne noire sur surface blanche)
Taux de rafraîchissement du capteur : 200 Hz
Processus d'étalonnage facile
Types de sortie double : 5 sorties numériques représentent chaque état du capteur IR, 1 sortie analogique représente la position de la ligne.
Prend en charge une large gamme de contrôleurs, tels que Arduino, Raspberry Pi, etc.
Téléchargements
Fiche de données
Tutoriel : Construire un robot de suivi de ligne bon marché
Le SparkFun Power Delivery Board utilise un contrôleur autonome pour négocier avec les adaptateurs d’alimentation et passer à une tension supérieure autre que 5V. Il utilise le même adaptateur d’alimentation pour différents projets plutôt que de compter sur plusieurs adaptateurs d’alimentation pour fournir une sortie différente; il peut fournir la carte dans le cadre du système de connexion Qwiic de SparkFun, de sorte que vous n’aurez pas à faire de soudure pour comprendre comment les choses sont orientées. Le SparkFun Power Delivery Board tire parti de la norme de distribution d’alimentation à l’aide d’un contrôleur autonome de STMicroelectronics, le STUSB4500. Le STUSB4500 est un contrôleur de distribution d’alimentation USB qui traite les appareils récepteur de données. Il met en œuvre un algorithme propriétaire pour négocier un contrat de distribution d’électricité avec une source (c.-à-d. une prise murale de distribution d’électricité ou un adaptateur d’alimentation) sans avoir besoin d’un microcontrôleur externe. Cependant, vous aurez besoin d’un microcontrôleur pour configurer la carte. Les profils PDO sont configurés dans une mémoire non volatile intégrée. Le contrôleur fait tout le poids de la négociation de puissance et fournit un moyen facile de configurer sur I2C. Pour configurer la carte, vous aurez besoin d’un bus I2C. Le système Qwiic facilite la connexion de la carte d’alimentation à un microcontrôleur. Selon votre application, vous pouvez également vous connecter au bus I2C via les trous SDA et SCL. Caractéristiques : Plage de tension d’entrée et de sortie de 5-20V Courant de sortie jusqu’à 5A Trois profils d’alimentation configurables Commande automatique de l’évier Type-C™ et USB PD Certifié USB Type-C™ rév. 1.2 et USB PD rév. 2.0 (TID n° 1000133) Surveillance intégrée de la tension VBUS Pilotes de porte de commutation VBUS intégrés (PMOS)'
Le DiP-Pi Power Master est un système d'alimentation avancé avec des interfaces de capteurs intégrées qui couvrent la plupart des besoins possibles pour les applications basées sur Raspberry Pi Pico. Il peut fournir au système jusqu'à 1,5 A à 4,8 V délivrés de 6 à 18 V CC sur divers schémas d'alimentation comme les voitures, les installations industrielles, etc., en plus du micro-USB d'origine du Raspberry Pi Pico. Il prend en charge la batterie LiPo ou Li-Ion avec chargeur automatique ainsi que la commutation automatique de l'alimentation par câble à l'alimentation par batterie ou inversement (fonctionnalité UPS) en cas de perte d'alimentation par câble. La source d'alimentation étendue (EPR) est protégée par un fusible réinitialisable PPTC, à polarité inversée, ainsi que par ESD. Le DiP-Pi Power Master contient un bouton RESET intégré au Raspberry Pi Pico ainsi qu'un interrupteur coulissant ON/OFF qui agit sur toutes les sources d'alimentation (USB, EPR ou batterie). L'utilisateur peut surveiller (via les broches A/D du Raspberry Pi Pico) le niveau de la batterie et le niveau EPR avec les convertisseurs A/D de PICO. Les deux entrées A/D sont pontées avec des résistances 0402 (0 OHM), donc si pour une raison quelconque l'utilisateur a besoin d'utiliser ces broches Pico pour sa propre application, elles peuvent être facilement retirées. Le chargeur charge automatiquement la batterie connectée (si utilisée), mais l'utilisateur peut en outre allumer/éteindre le chargeur si son application en a besoin. DiP-Pi Power Master peut être utilisé pour les systèmes alimentés par câble, mais également pour les systèmes purement alimentés par batterie avec ON/OFF. L'état de chaque source d'alimentation est indiqué par des LED informatives distinctes (VBUS, VSYS, VEPR, CHGR, V3V3). L'utilisateur peut utiliser n'importe quelle capacité de type LiPo ou Li-Ion ; Cependant, il faut veiller à utiliser des batteries protégées par PCB avec un courant de décharge maximum autorisé de 2 A. Le chargeur de batterie intégré est configuré pour charger la batterie avec un courant de 240 mA. Ce courant est réglé par une résistance, donc si l'utilisateur a besoin de plus/moins, il peut le changer lui-même.
En plus de toutes les fonctionnalités ci-dessus, le DiP-Pi Power Master est équipé d'interfaces de capteurs 1 fil et DHT11/22 intégrées. La combinaison des interfaces étendues d'alimentation, de batterie et de capteurs rend le DiP-Pi Power Master idéal pour les applications telles que l'enregistreur de données, la surveillance des usines, la surveillance des réfrigérateurs, etc.
DiP-Pi Power Master est pris en charge avec de nombreux exemples prêts à l'emploi écrits en Micro Python ou C/C++.
Caractéristiques
Général
Dimensions 21 x 51 mm
Compatible avec le brochage Raspberry Pi Pico
LED informatives indépendantes (VBUS, VSYS, VEPR, CHGR, V3V3)
Bouton RESET du Raspberry Pi Pico
Interrupteur à glissière ON/OFF agissant sur toutes les sources d'alimentation (USB, EPR, Batterie)
Alimentation externe 6-18 V DC (voitures, applications industrielles, etc.)
Surveillance du niveau d'alimentation externe (6-18 VCC)
Surveillance du niveau de batterie
Protection contre l'inversion de polarité
Protection par fusible PPTC
Protection ESD
Chargeur de batterie automatique (pour LiPo, Li-Ion protégé par PCB – 2 A Max) Automatique/Contrôle utilisateur
Passage automatique de l'alimentation par câble à l'alimentation par batterie et inversement (fonctionnalité UPS)
Différents schémas d'alimentation peuvent être utilisés simultanément avec l'alimentation USB, l'alimentation externe et l'alimentation par batterie.
Convertisseur Buck 1,5 A à 4,8 V sur EPR
LDO intégré de 3,3 V à 600 mA
Interface 1 fil intégrée
Interface DHT-11/22 intégrée
Options d'alimentation
Raspberry Pi Pico micro USB (via VBUS)
Alimentation externe 6-18 V (via prise dédiée – 3,4/1,3 mm)
Batterie externe
Types de batteries pris en charge
LiPo avec PCB de protection courant max 2A
Li-Ion avec PCB de protection courant max 2A
Périphériques et interfaces intégrés
Interface 1 fil intégrée
Interface DHT-11/22 intégrée
Interface de programmation
Raspberry Pi standard Pico C/C++
Raspberry Pi standard Pico Micro Python
Compatibilité des cas
Boîtier DiP-Pi Plexi-Cut
Surveillance du système
Niveau de batterie via Raspberry Pi Pico ADC0 (GP26)
Niveau EPR via Raspberry Pi Pico ADC1 (GP27)
LED informatives
VB (VUSB)
États-Unis (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
Protection du système
Bouton de réinitialisation matérielle instantanée Raspberry Pi Pico
Protection ESD sur EPR
Protection contre l'inversion de polarité sur l'EPR
Fusible PPTC 500 mA @ 18 V sur EPR
Protection contre la surchauffe EPR/LDO
EPR/LDO À propos de la protection actuelle
Conception du système
Conçu et simulé avec PDA Analyzer avec l'un des outils CAO/FAO les plus avancés – Altium Designer
Origine industrielle
Construction de circuits imprimés
PCB de 2 oz en cuivre fabriqué pour une alimentation et un refroidissement appropriés en courant élevé
Technologie de piste de 6 mils/écart de 6 mils PCB à 2 couches
Finition de surface de PCB – Immersion Gold
Tuyaux thermiques en cuivre multicouche pour une réponse thermique accrue du système et un meilleur refroidissement passif
Téléchargements
Fiche de données
Fiche de données
Branchez un lecteur dans les en-têtes, utilisez un câble Qwiic, scannez votre étiquette d’identification 125kHz et l’ID 32 bits unique s’affichera à l’écran. L’appareil est livré avec une DEL de lecture et un buzzer, mais ne vous inquiétez pas, il y a un cavalier que vous pouvez couper pour désactiver le buzzer si vous voulez. En utilisant le système Qwiic pratique de SparkFun, aucune soudure n’est nécessaire pour le connecter au reste de votre système. Cependant, nous avons encore des broches espacées de 0,1' si vous préférez utiliser une platine d'expérimentation. En utilisant l’ATtiny84A de bord, le Qwiic RFID prend l’étiquette d’identification de six octets de votre carte RFID 125kHz, lui attache un horodatage, et le met sur une pile qui contient jusqu’à 20 scans RFID uniques à la fois. Cette information est facile à obtenir avec quelques commandes I2C simples.
Caractéristiques
Taille
23,2 x 12,5 x 22 mm
Poids
9g
Type d'engrenage
Équipement en plastique (Nylon et POM)
Angle limite
120
Palier Pas de roulements à billes
Cannelure d'engrenage de klaxon
20T (4,8 mm)
Type de klaxon
Plastique, POM
Cas
Nylon et fibre de verre
Fil de connecteur
200mm
Moteur
Moteur à balais métalliques
Résistance à l'eau
Non
Inclus
1x servomoteur FeeTech FS90
1x klaxon de servo droit à une extrémité
1x klaxon de servo droit à double extrémité
1x klaxon de servo droit à double extrémité ailé
1x klaxon de servo étoile à quatre branches
1x klaxon de servo rond
1x vis de klaxon de servo
2x vis de montage du servo FS90
Téléchargements
Mode d'emploi
Carte de développement compacte compatible Arduino, MicroPython et CircuitPython alimentée par Raspberry Pi RP2040
RP2040-0.42LCD est une carte de développement hautes performances avec écran LCD intégré de 0,42' (résolution 70x40) avec interfaces numériques flexibles.
Il intègre la puce du microcontrôleur RP2040 du Raspberry Pi. Le RP2040 est doté d'un processeur Arm Cortex-M0+ double cœur cadencé à 133 MHz avec 264 Ko de SRAM interne et 2 Mo de stockage flash.
Caractéristiques
SoC
Microcontrôleur Raspberry Pi RP2040 double cœur Cortex-M0+ jusqu'à 125 MHz, avec 264 Ko de SRAM
Stockage
Flash SPI de 2 Mo
Afficher
OLED de 0,42 pouce
USB
1x port USB Type-C pour l'alimentation et la programmation
Expansion
– Connecteur Qwiic I²C – Embases à 7 et 8 broches avec jusqu'à 11x GPIO, 2x SPI, 2x I²C, 4x ADC, 1x UART, 5 V, 3,3 V, VBAT, GND
Divers
– Boutons de réinitialisation et de démarrage – LED RVB, LED d'alimentation
Source de courant
– 5 V via port USB-C ou Vin - Broche VBAT pour l'entrée de la batterie – Régulateur 3,3 V avec sortie crête 500 mA
Dimensions
23,5x18mm
Poids
2,5g
Téléchargements
GitHub