Using the RFID Starter Kit
An Arduino board has now become ‘the’ basic component in the maker community. No longer is an introduction to the world of microcontrollers the preserve of the expert. When it comes to expanding the capabilities of the basic Arduino board however, the developer is still largely on his own. If you really want to build some innovative projects it’s often necessary to get down to component level. This can present many beginners with major problems. That is exactly where this book begins.
This book explains how a wide variety of practical projects can be built using items supplied in a single kit together with the Arduino board. This kit, called the 'RFID Starter Kit for Arduino' (SKU 17240) is not just limited to RFID applications but contains more than 30 components, devices and modules covering all areas of modern electronics.
In addition to more simple components such as LEDs and resistors there are also complex and sophisticated modules that employ the latest technology such as:
A humidity sensor
A multicolor LED
A large LED matrix with 64 points of light
A 4-character 7-segment LED display
An infra red remote-controller unit
A complete LC-display module
A servo
A stepper motor and controller module
A complete RFID reader module and security tag
On top of that you will get to build precise digital thermometers, hygrometers, exposure meters and various alarm systems. There are also practical devices and applications such as a fully automatic rain sensor, a sound-controlled remote control system, a multifunctional weather station and so much more.
All of the projects described can be built using the components supplied in the Elektor kit.
Projets avec Arduino, ESPHome, Home Assistant, et Raspberry Pi & Co.
Ce livre électronique contient plusieurs exemples de projets, en commençant par une introduction à l'électronique. Il explique également comment installer Home Assistant sur un Raspberry Pi, comment utiliser des capteurs de climat intérieur pour la température et l'humidité, comment mettre en œuvre le protocole MQTT et d'autres interfaces, et comment utiliser ESPHome pour intégrer des capteurs et des actionneurs dans Home Assistant. De nombreux tutoriels vidéo complètent le livre.
Fundamentals of electrical engineering
The book begins with an introduction to electrical engineering. You will learn the basics of voltage, current, resistors, diodes and transistors.
Arduino and microcontrollers
A complete section is dedicated to the Arduino Uno. You will get to know the structure, write your first programs and work on practical examples.
Home Assistant and automation
You will learn how to set up Home Assistant on a Raspberry Pi and how to use automations, scenes and devices. In addition, Zigbee, MQTT and ESP-NOW – important technologies for home automation – will be discussed.
ESP8266, ESP32 and ESP32-CAM
The popular ESP microcontrollers are covered in detail. A theoretical introduction is followed by practical projects that show you how to get the most out of these devices.
Sensors and actuators
The book explains the functionality and application of numerous sensors such as temperature and humidity sensors, motion detectors and RFID readers. For actuators, stepper motors, e-ink displays, servo motors and much more are covered. There are practical application examples for all devices.
ESPHome
This chapter shows you how to integrate sensors and actuators into Home Assistant without any programming effort. You will be guided step by step through the setup with ESPHome.
LEDs and lighting technology
In this chapter, you will learn about different types of LEDs and how they can be used. The basics of lighting technology are also explained.
Node-RED
A whole chapter is dedicated to Node-RED. You will learn the basics of this powerful tool and be guided step by step through its setup and use.
Integrated Circuits (ICs)
In electronics, there are numerous ICs that make our lives easier. You will get to know the most important ones and apply your knowledge in practical projects.
Professional programming
Advanced topics such as the correct use of buttons, the use of interrupts and the use of an NTP server for time synchronisation are covered in detail in this chapter.
Downloads
GitHub
Livre de projet GET TO KNOW YOUR TOOLS : une introduction aux notions de base SPACESHIP INTERFACE concevez le panneau de commande de votre vaisseau spatial LOVE-O-METER mesurer votre degré d'ardeur COLOR MIXING LAMP produisez n'importe quelle couleur avec une lampe qui utilise la lumière comme entrée MOOD CUE Indiquez aux gens comment vous vous sentez LIGHT THEREMIN créer un instrument musical dont on joue en agitant les mains KEYBOARD INSTRUMENT jouez de la musique et faites du bruit avec ce clavier DIGITAL HOURGLASS un sablier lumineux qui peut vous empêcher de trop travailler MOTORIZED PINWHEEL une roue de couleur qui vous fera tourner la tête ZOETROPE créer une animation mécanique que vous pouvez jouer en avant ou en inverse CRYSTAL BALL une visite mystique pour répondre à toutes vos questions difficiles KNOCK LOCK tapez le code secret pour ouvrir la porte TOUCHY-FEEL LAMP une lampe qui réagit au toucher TWEAK THE ARDUINO LOGO contrôler votre ordinateur personnel depuis votre Arduino HACKING BUTTONS créez une commande principale pour tous vos appareils! Inclus 1 Livre de projets (170 pages) 1 Arduino Uno 1 Cable USB 1 plaque d'essai 400 points 70 fils de fer 1 Base en bois facile à assembler 1 Connecteur d'une pile 9 V 1 Fils de connexion (noir) 1 Fils de connexion(rouge) 6 Phototransistors 3 Potentiomètre 10 kΩ 10 Boutons-poussoirs 1 Capteur de température [TMP36] 1 Capteur d'inclinaison 1 LCD alphanumérique (16x2 caractères) 1 LED (blanc) 1 LED (RGB) 8 LED (rouge) 8 LED (vert) 8 LED (jaune) 3 LED (bleu) 1 Petir moteur DC 6/9 V 1 Petit servo moteur 1 Piezo capsule 1 Pilote de moteur à pont en H 1 Optocoupleurs 2 Transistors Mosfet 3 Condensateurs 100 uF 5 Diodes 3 Gels transparents 1 Bande de broches mâle (40x1) 20 Résistances 220 Ω 5 Résistances 560 Ω 5 Résistances 1 kΩ 5 Résistances 4.7 kΩ 20 Résistances 10 kΩ 5 Résistances 1 MΩ 5 Résistances 10 MΩ
Le téléchargement intégral de ce numéro est disponible pour nos membres GOLD et GREEN sur le site Elektor Magazine !Pas encore membre ? Cliquez ici.Arduino Portenta Machine Control et Arduino Portenta H7démonstration avec une passerelle CAN vers MQTTle kit LCR-mètre 2 MHz d'Elektorrejoignez David Cuartielles, cofondateur d'Arduino, en direct !MicroPython entre dans le monde de l'ArduinoLes projets connectés simplifiésPlongez dans l'Arduino CloudIntroduction à TinyMLPlus gros n'est pas toujours mieuxArduino K-Wayl'écriture des croquis Arduino en net progrèsArduino en questionsdébuter avec le Portenta X8gestion sécurisée des logiciels avec les conteneurscréez, déployez et maintenez des applications évolutives et sécuriséesavec Arduino Portenta X8 équipé du mini processeur d'applications i.MX 8M de NXP et de l'élément de sécurité EdgeLock SE050comment j'ai automatisé ma maisonFabio Violante, PDG d'Arduino, partage ses solutionssimulateur Altair 8800simulation matérielle d'un ordinateur ancienMS-DOS sur le Portenta H7exécuter des logiciels old-school sur du matériel modernecultivez-le vous-mêmeune jardinière numérique d'intérieur tout-en-unSauver la planète avec la domotique ?MQTT sur l'Arduino Nano RP2040 Connectdevenez professionnel avec Arduino Proles fours intelligents font un bond dans le futurTagvance conçoit des chantiers de construction plus sûrs avec ArduinoSantagostino respire facilementavec une surveillance à distance qui tire parti de l'IA pour une maintenance prédictivela sécurité atteint des sommets avec la solution basée sur les cartes MKR de RIoT Securel'open-source apporte au monde du progrès dans la gestion de l'eauSensoDétecter la déforestation grâce à l'analyse sonoreBibliothèque Mozzi Arduino pour la synthèse sonoreLe point de vue de Tim Barrassles nouveaux Portenta X8 (avec Linux !) et Max Carrier redéfinissent le champ des possiblescomment l'utilisation d'Arduino aide les étudiants à acquérir des compétences futuresBien s'équiper pour mieux travaillerl'importance de la robotique dans l'enseignementLoRa fiabilise l'IdOla carte Portenta Machine control en détailrétro-gaming avec Arduboyréduire l'utilisation de l'eau sur les pistes d'équitationun IdO pour surveiller en permanence les niveaux d'humidité et de température du solle projet Panettonesystème de gestion et de maintien d'un ferment au levainSupporting Arduino ResellersSpace Invaders avec Arduinocréation artistique dans l'environnement Arduinodes idées inspirantes d'artistes et de designersArduino Product CatalogueL'avenir de l'Arduino
Tirez le Levier pour le Score Maximum ! Ce Classique de Circuit Elektor de 1984 présente une application ludique des circuits logiques de la série CMOS 400x en combinaison avec des LEDs, une combinaison très populaire à l'époque. Le projet imite une machine à sous à chiffres tournants. Le Jeu Pour jouer, convenez d'abord du nombre de manches. Le Joueur 1 actionne le levier de l'interrupteur aussi longtemps qu'il le souhaite et le relâche. Les LEDs affichent ensuite le score qui est la somme des chiffres 50-20-10-5 allumés. Si la LED Jouer Encore ! s'allume, le Joueur 1 a une autre manche 'gratuite'. Sinon, c'est au tour du Joueur 2. Les joueurs tiennent compte de leurs scores, et le score le plus élevé l'emporte. Caractéristiques LEDs Indiquent le Score Plusieurs Joueurs et Jouer Encore ! Symboles de Circuit Patrimoine d'Elektor Testé et Approuvé par les Laboratoires Elektor Projet Éducatif et Geek Pièces Montage Traditionnel Seulement Inclus Carte de Circuit Imprimé Tous les Composants Socle en Bois Liste des Composants Résistances (5%, 250 mW) R1,R2,R3,R4 = 100kΩ R5,R6,R7,R8,R9,R10 = 1kΩ Condensateurs C1 = 4.7nF, 10%, 50V, 5mm C2 = 4.7μF, 10%, 63V, axial C3,C4 = 100nF, 10 %, 50V, céramique X7R, 5mm Semi-conducteurs LED1-LED6 = rouge, 5mm (T1 3/4) IC1 = 74HC4024 IC2 = 74HC132 Divers S1 = interrupteur, bascule, levier de 21mm, SPDT, momentané S2 = interrupteur, tactile, 24V, 50mA, 6x6mm S3 = interrupteur, glissière, SPDT IC1,IC2 = support de circuit intégré, DIP14 BT1 = pince de maintien de batterie CR2032 montée sur circuit imprimé Socle de Bureau PCB 230098-1 Non inclus : BT1 = pile bouton CR2032
Le compteur d'énergie Elektor ESP32 est un appareil conçu pour la surveillance de l'énergie en temps réel et l'intégration de la maison connectée. Alimenté par le microcontrôleur ESP32-S3, il offre des performances robustes avec des fonctionnalités modulaires et évolutives.
L'appareil utilise un transformateur abaisseur de 220 V à 12 V pour l'échantillonnage de tension, garantissant ainsi l'isolation galvanique et la sécurité. Sa configuration PCB compacte comprend des borniers à vis pour des connexions sécurisées, un connecteur Qwiic pour des capteurs supplémentaires et un connecteur de programmation pour une configuration directe ESP32-S3. Le compteur d'énergie est compatible avec les systèmes monophasés et triphasés, ce qui le rend adaptable à diverses applications.
Le compteur d'énergie est simple à configurer et s'intègre à Home Assistant, offrant des capacités de surveillance en temps réel, d'analyse historique et d'automatisation. Il fournit des mesures précises de tension, de courant et de puissance, ce qui en fait un outil précieux pour la gestion de l'énergie dans les maisons et les entreprises.
Caractéristiques
Surveillance complète de l'énergie : Obtenez des informations détaillées sur votre consommation d'énergie pour une gestion plus intelligente.
Logiciel personnalisable : Adaptez les fonctionnalités à vos besoins en programmant et en intégrant des capteurs personnalisés.
Prêt pour la maison connectée : Compatible avec ESPHome, Home Assistant et MQTT pour une intégration complète à la maison connectée.
Conception sûre et flexible : Fonctionne avec un transformateur abaisseur de 220 V à 12 V et comporte une carte CMS pré-assemblée.
Démarrage rapide : Comprend un capteur de transformateur de courant et un accès à des ressources de configuration gratuites.
Spécifications
Microcontrôleur
ESP32-S3-WROOM-1-N8R2
CI de mesure d'énergie
ATM90E32AS
Indicateurs d'état
4 LED pour l'indication de la consommation électrique2 LED programmables pour les notifications d'état personnalisées
Entrée utilisateur
2x boutons-poussoirs pour le contrôle utilisateur
Afficher la sortie
Écran OLED I²C pour une visualisation de la consommation électrique en temps réel
Tension d'entrée
110/220 V AC (via transformateur abaisseur)
Puissance d'entrée
12 V (via transformateur abaisseur ou entrée DC)
Capteur de courant à pince
YHDC SCT013-000 (100 A/50 mA) inclus
Intégration de la maison connectée
ESPHome, Home Assistant et MQTT pour une connectivité transparente
Connectivité
En-tête pour la programmation, Qwiic pour l'extension du capteur
Applications
Prend en charge les systèmes de surveillance de l'énergie monophasés et triphasés
Dimensions
79,5 x 79,5 mm
Inclus
1x Carte partiellement assemblée (les composants CMS sont pré-montés)
2x Connecteurs de bornier à vis (non montés)
1x Transformateur de courant YHDC SCT013-000
Requis
Transformateur de puissance non inclus
Téléchargements
Datasheet (ESP32-S3-WROOM-1)
Datasheet (ATM90E32AS)
Datasheet (SCT013-000)
Frequently Asked Questions (FAQ)
Du prototype au produit fini
Ce qui a commencé comme un projet innovant visant à créer un compteur d'énergie fiable et convivial utilisant le microcontrôleur ESP32-S3 est devenu un produit robuste. Initialement développé en tant que projet open source, le compteur d'énergie ESP32 visait à fournir une surveillance précise de l'énergie, une intégration de maison intelligente et bien plus encore. Grâce à un développement méticuleux du matériel et du micrologiciel, le compteur d'énergie se présente désormais comme une solution compacte et polyvalente pour la gestion de l'énergie.
L'adaptateur milliohmmètre Elektor utilise la précision d'un multimètre pour mesurer des valeurs de résistance très faibles. Il convertit une résistance en tension mesurable avec un multimètre standard.
L'adaptateur milliohmmètre Elektor permet de mesurer des résistances inférieures à 1 mΩ grâce à la méthode 4 fils (Kelvin). Il est utile pour localiser les courts-circuits sur les circuits imprimés.
L'adaptateur dispose de trois plages de mesure : 1 mΩ, 10 mΩ et 100 mΩ, sélectionnables via un interrupteur à glissière. Il intègre également des résistances d'étalonnage. L'adaptateur milliohmmètre Elektor est alimenté par trois piles AA de 1,5 V (non fournies).
Spécifications
Gammes de mesure
1 mΩ, 10 mΩ, 100 mΩ, 0,1%
Alimentation
3x piles AA 1,5 V (non fournies)
Dimensions
103 x 66 x 18 mm (compatible avec le boîtier de type Hammond 1593N, non fourni)
Spécificité
Résistances d'étalonnage intégrées
Téléchargements
Documentation
Sifflez et il vous répondra en gazouillant ! Même si de nombreuses personnes possèdent et observent avec amour des oiseaux de toutes sortes, malheureusement la plupart d'entre eux n'ont pas encore appris à communiquer avec nous. Cet oiseau entièrement électronique fait un pas dans la bonne direction : lorsque vous sifflez, il vous répond en gazouillant ! Caractéristiques Réagit au Sifflement Sons d'Oiseaux Réglables (Ton et Durée) Symboles de Circuit Patrimoine d'Elektor Testé et Approuvé par les Laboratoires Elektor Projet Éducatif et Geek Pièces Montage Traditionnel Seulement Inclus Carte de Circuit Imprimé Tous les Composants Socle en Bois Liste des Composants Résistances R1,R2 = 2.2kΩ R3,R4,R13 = 47kΩ R5 = 4.7kΩ R6 = 3.3kΩ R7,R10,R11,R12,R17 = 100kΩ R8,R19,R23 = 1kΩ R9 = 1MΩ R14,R15 = 10kΩ R16,R18 = 470kΩ R20 = 68kΩ R21 = 10MΩ R22 = 2.7kΩ R24 = 22Ω P1,P2 = 1MΩ P3,P5 = 470kΩ P4 = 100kΩ Condensateurs C1,C2,C12 = 100nF C3,C4 = 10nF C5 = 22μF, 16V C6,C7,C11 = 10μF, 16V C8 = 2.2μF, 100V C9 = 1μF, 50V C10 = 2.2nF C13 = 10nF Semi-conducteurs D1,D3,D4,D5,D6,D7,D8 = 1N4148 D2 = Diode zener 3V3 T1,T2 = BC557B T3 = BC547B T4 = BC327-40 IC1 = TL084CN IC2 = 4093 Divers BT1 = Pince de batterie câblée pour 6LR61/PP3 LS1 = Haut-parleur miniature, 8Ω, 0.5W S1 = Interrupteur, glissière, SPDT MIC1 = Microphone électret PCB 230153-1 v1.1
Offre groupée complète de matériel et de livres pour le microcontrôleur RP2040 avec plus de 80 projets
Débloquez le potentiel de la technologie de contrôleur moderne avec le Raspberry Pi Pico dans cette offre groupée. Parfait pour les utilisateurs débutants et expérimentés, ce guide facile à suivre vous emmène des bases de l'électronique aux complexités du traitement du signal numérique. Avec le Raspberry Pi Pico, le kit matériel dédié et la programmation MicroPython, vous apprendrez les principes clés de la conception de circuits, de la collecte de données et du traitement.
Mettez en pratique plus de 80 projets, comme un chronomètre avec écran OLED, un télémètre laser et un ventilateur servocommandé. Ces projets sont conçus pour vous aider à appliquer ce que vous avez appris dans des scénarios réels. Le livre couvre également des sujets avancés tels que la technologie RFID sans fil, la détection d'objets et l'intégration de capteurs pour la robotique.
Que vous cherchiez à développer vos compétences en électronique ou à vous plonger plus profondément dans les systèmes embarqués, cet ensemble est la ressource idéale pour vous aider à explorer tout le potentiel du Raspberry Pi Pico.
Contenu de l'offre groupée
1x Livre de projet (273 pages)
1x Raspberry Pi Pico WH
1x Raspberry Pi Pico H
1x Kit de voiture intelligente
Composants électroniques
2x Planches à pain sans soudure (400 trous)
1x Planche à pain sans soudure (170 trous)
5x LED colorées de 5 mm (verte, rouge, bleue, jaune et blanche)
1x Émetteur laser
1x Buzzer passif
1x Câble micro-USB (30 cm)
1x 65 fils de liaison
1x Câble Dupont mâle vers femelle de 20 cm
1x Étui transparent
1x Aimant (diamètre : 8 mm, épaisseur : 5 mm)
1x Potentiomètre rotatif
10x Résistances de 2 KΩ
2x Piliers en cuivre M2,5x30 mm
10x Vis à tête cylindrique Phillips
10x Écrous hexagonaux M2,5 en nickel
1x Tournevis double usage de 2 pouces
Modules
1x Module RVB
1x Servomoteur 9G
1x Module joystick XY à deux axes
1x Module RFID RC522
1x Module d'affichage LED numérique 4 bits
1x Module d'affichage des feux de circulation
1x Module d'encodeur rotatif
1x Module d'affichage LCD 1602 (bleu)
1x Module de photorésistance
1x Moteur à courant continu avec fil Dupont mâle
1x Pale de ventilateur
1x Module Gouttes de Pluie
1x Module OLED
1x Clavier à interrupteur à membrane
1x Mini module à ressort magnétique
1x Télécommande infrarouge
1x Module récepteur infrarouge
1x Carte pilote de moteur pas à pas CC
1x Bouton
Capteurs
1x Capteur de vibrations
1x Capteur d'humidité du sol
1x Capteur de son
1x Mini capteur de mouvement PIR
1x Capteur de température et d'humidité
1x Capteur de flamme
2x Capteurs de collision
2x Capteurs de suivi
1x Capteur à ultrasons
L'Arduino Nano est une petite carte, complète et facile à monter sur une planche à pain, basée sur l'ATmega328 (Arduino Nano 3.x). Il possède plus ou moins les mêmes fonctionnalités que l'Arduino Duemilanove, mais dans un emballage différent. Il lui manque seulement une prise d'alimentation en courant continu et elle fonctionne avec un câble USB Mini-B au lieu d'un câble standard.
Caractéristiques
Microcontrôleur
ATmega328
Tension de fonctionnement (niveau logique)
5 V
Tension d'entrée (recommandée)
7-12 V
Tension d'entrée (limites)
6-20V
Broches d'E/S numériques
14 (dont 6 avec sortie PWM)
Broches d'entrée analogique
8
Courant CC par broche E/S
40mA
Mémoire flash
16 Ko (ATmega168) ou 32 Ko (ATmega328) dont 2 Ko utilisés par le chargeur de démarrage
SRAM
1 Ko (ATmega168) ou 2 Ko (ATmega328)
EEPROM
512 octets (ATmega168) ou 1 Ko (ATmega328)
Vitesse de l'horloge
16 MHz
Dimensions
18x45mm
Source de courant
L'Arduino Nano peut être alimenté via la connexion USB Mini-B, une alimentation externe non régulée de 6 à 20 V (broche 30) ou une alimentation externe régulée de 5 V (broche 27). La source d'alimentation est automatiquement sélectionnée sur la source de tension la plus élevée.
Mémoire
L'ATmega168 dispose de 16 Ko de mémoire flash pour stocker le code (dont 2 Ko sont utilisés pour le chargeur de démarrage), 1 Ko de SRAM et 512 octets d'EEPROM.
L'ATmega328 dispose de 32 Ko de mémoire flash pour le stockage du code (dont 2 Ko sont également utilisés pour le chargeur de démarrage), 2 Ko de SRAM et 1 Ko d'EEPROM.
Entrée et sortie
Chacune des 14 broches numériques du Nano peut être utilisée comme entrée ou sortie, en utilisant les fonctions pinMode() , digitalWrite() et digitalRead() . Ils fonctionnent à 5 V.
Chaque broche peut fournir ou recevoir un maximum de 40 mA et possède une résistance de rappel interne (désactivée par défaut) de 20 à 50 kohms.
Communication
L'Arduino Nano dispose d'un certain nombre de fonctionnalités pour communiquer avec un ordinateur, un autre Arduino ou d'autres microcontrôleurs.
Les ATmega168 et ATmega328 fournissent une communication série UART TTL (5 V), disponible sur les broches numériques 0 (RX) et 1 (TX). Un FTDI FT232RL sur la carte canalise cette communication série via USB et les pilotes FTDI (inclus avec le logiciel Arduino) fournissent un port COM virtuel au logiciel de l'ordinateur.
Le logiciel Arduino comprend un moniteur série qui permet d'envoyer des données textuelles simples vers et depuis la carte Arduino. Les LED RX et TX de la carte clignoteront lorsque les données seront envoyées via la puce FTDI et la connexion USB à l'ordinateur (mais pas pour les communications série sur les broches 0 et 1).
Une bibliothèque SoftwareSerial permet la communication série sur chacune des broches numériques du Nano.
Programmation informatique
L'Arduino Nano peut être programmé avec le logiciel Arduino ( télécharger ).
L'ATmega168 ou l'ATmega328 de l'Arduino Nano est livré avec un chargeur de démarrage qui vous permet de télécharger un nouveau code sans utiliser de programmeur matériel externe. Il communique en utilisant le protocole STK500 d'origine ( référence , fichiers d'en-tête C ).
Vous pouvez également contourner le chargeur de démarrage et programmer le microcontrôleur via l'en-tête ICSP (In-Circuit Serial Programming) avec Arduino ISP ou similaire ; voir ces instructions pour plus de détails.
Réinitialisation automatique (logicielle)
Plutôt que de nécessiter une pression physique sur le bouton de réinitialisation avant un téléchargement, l'Arduino Nano est conçu de manière à permettre sa réinitialisation par un logiciel exécuté sur un ordinateur connecté.
L'une des lignes de contrôle d'alimentation matérielle (DTR) du FT232RL est connectée à la ligne de réinitialisation de l'ATmega168 ou de l'ATmega328 via un condensateur de 100 nF. Lorsque cette ligne est affirmée (prise au niveau bas), la ligne de réinitialisation descend suffisamment longtemps pour réinitialiser la puce.
Le logiciel Arduino utilise cette capacité pour vous permettre de télécharger du code en appuyant simplement sur le bouton de téléchargement dans l'environnement Arduino. Cela signifie que le chargeur de démarrage peut avoir un délai d'attente plus court, car la réduction du DTR peut être bien coordonnée avec le début du téléchargement.
,
par Lobna Belarbi
Cartes, kits et outils indispensables pour commencer votre parcours Arduino avec Elektor
Que vous soyez un débutant désireux d'explorer l’univers des microcontrôleurs ou un maker expérimenté souhaitant étoffer sa panoplie d’outils, Elektor propose une sélection soignée de...