L'ESP8266 est un module WiFi impressionnant et abordable, adapté pour ajouter des fonctionnalités wifi à un projet a microcontrôleur existant via une connexion série UART. Le module peut même être reprogrammé pour agir comme un appareil autonome connecté au wifi– il suffit de l'alimenter ! Protocole 802.11 b/g/n wifi Direct (P2P), soft-AP Pile de protocole TCP/IP intégrée Ce module est un SOC ( système sur puce) autonome qui ne nécessite pas un microcontrôleur pour contrôler ses entrées et sorties comme vous le feriez normalement avec un Arduino, par exemple, car l'ESP-01 agit comme un nano ordinateur. Ainsi, vous pouvez donner à votre microcontrôleur un accès à Internet comme avec un shield wifi pour Arduino, ou vous pouvez simplement programmer l'ESP8266 pour qu'il ait non seulement accès à un réseau wifi, mais qu'il agisse également comme un microcontrôleur, ce qui rend l'ESP8266 très polyvalent.
Ce module Wi-Fi est basé sur la populaire puce ESP8266. Le module est certifié FCC et CE et conforme à la directive RoHS.
Entièrement compatible avec l'ESP-12E. 13 broches E/S (GPIO), 1 entrée analogique, 4 Mo de mémoire flash.
Cette version du Micro OLED Breakout est exactement la même taille du non-Qwiic, avec un écran de 64 pixels de large et 48 pixels de haut et mesurant 0,66' de diamètre. Mais il a également été équipé de deux connecteurs Qwiic, ce qui le rend idéal pour les opérations I2C. Nous avons également ajouté deux trous de montage et un support de câble Qwiic pratique intégré dans une languette amovible sur la carte qui peut être facilement retiré grâce à un bord en V. Nous avons même veillé à inclure un pull-up I2C et un jumper ADDR à l’arrière de la carte, donc si vous avez vos propres pull-ups I2C ou si vous avez besoin de changer l’adresse I2C de la carte! Caractéristiques Connecteur Qwiic activé Tension de fonctionnement : 3,3 V Courant de fonctionnement : 10 mA (20 mA max) Taille de l’écran : 64x48 pixels (0,66' de diamètre) Monochrome bleu sur noir Interface I2C »
La base de jardin Pico Breakout se trouve sous votre Pico et vous permet d'y connecter jusqu'à six de notre vaste sélection de sorties Pimoroni. Qu'il s'agisse de capteurs environnementaux pour que vous puissiez suivre la température et l'humidité dans votre bureau, de toute une série de petits écrans pour les notifications et lectures importantes et, bien sûr, de LED. Faites défiler vers le bas pour une liste des sous-commissions actuellement compatibles avec nos bibliothèques C++/MicroPython ! En plus d'une zone d'atterrissage étiquetée pour votre Pico, il existe également un ensemble complet de connexions Pico découpées, au cas où vous auriez besoin de connecter encore plus de capteurs, de fils et de circuits. Nous avons ajouté des pieds en caoutchouc pour maintenir la base bien stable et pour l'empêcher de rayer votre bureau, ou il y a des trous de montage M2,5 dans les coins afin que vous puissiez la boulonner sur une surface solide si vous préférez.
Les six emplacements noirs robustes sont des connecteurs de bord qui relient les sorties aux broches de votre Pico. Il y a deux emplacements pour les sorties SPI et quatre emplacements pour les sorties I²C. Parce qu'I²C est un bus, vous pouvez utiliser plusieurs appareils I²C en même temps, à condition qu'ils n'aient pas la même adresse I²C (nous nous sommes assurés que toutes nos sorties ont des adresses différentes, et nous les imprimons au dos de chaque bus). les éruptions cutanées pour qu'elles soient faciles à trouver). En plus d'être un moyen pratique d'ajouter des fonctionnalités à votre Pico, Breakout Garden est également très utile pour les projets de prototypage sans avoir besoin de câblage, de soudure ou de planches à pain compliqués, et vous pouvez agrandir ou modifier votre configuration à tout moment.
Caractéristiques
Six emplacements de connecteur de bord robustes pour les ruptures
4x emplacements I²C (5 broches)
2x emplacement SPI (7 broches)
Zone d'atterrissage avec embases femelles pour Raspberry Pi Pico
Pas de 0,1", connecteurs 5 ou 7 broches
Des épingles cassées
Protection contre l'inversion de polarité (intégrée aux breakouts)
99% assemblé – il suffit de coller les pieds !
Compatible avec Raspberry Pi Pico
Grâce à ses six emplacements robustes, Breakout Garden permet aux utilisateurs de simplement brancher et jouer avec diverses petites cartes de dérivation.
Insérez simplement une ou plusieurs planches dans les emplacements du Breakout Garden HAT et vous êtes prêt à partir. Les mini-breakouts se sentent suffisamment en sécurité dans les fentes des connecteurs de bord et il est très peu probable qu'elles tombent.
Il y a un certain nombre de broches utiles en haut de Breakout Garden, qui vous permettent de connecter d'autres appareils et de les intégrer dans votre projet.
Vous ne devriez pas vous inquiéter si vous insérez une carte dans le mauvais sens grâce à la protection contre l'inversion de polarité fournie. Peu importe non plus l'emplacement que vous utilisez pour chaque dérivation, car l'adresse I²C de la dérivation sera reconnue par le logiciel et il les détectera correctement au cas où vous les déplaceriez.
Caractéristiques
Six emplacements de connecteur de bord robustes pour les sorties Pimoroni
Pas de 0,1", connecteurs à 5 broches
Broches cassées (bande 1 × 10 ou embase mâle incluse)
Entretoises (M2,5, hauteur 10 mm) incluses pour maintenir votre Breakout Garden en toute sécurité
Protection contre l'inversion de polarité (intégrée aux breakouts)
Carte format HAT
Compatible avec Raspberry Pi 3 B+, 3, 2, B+, A+, Zero et Zero W
Il est suggéré d'utiliser les entretoises incluses pour fixer Breakout Garden à votre Raspberry Pi.
Logiciel
Breakout Garden ne nécessite aucun logiciel propre, mais chaque breakout que vous utiliserez aura besoin d'une bibliothèque Python. Sur la page GitHub de Breakout Garden, vous trouverez un programme d'installation automatique, qui installera le logiciel approprié pour une évasion donnée. Il existe également quelques exemples qui vous montrent ce que vous pouvez faire d'autre avec Breakout Garden.
Caractéristiques
Tension de fonctionnement : 3,3 V
Microcontrôleur ESP-12E
Taille de l'écran : 1,28 pouces
Port USB pour l'alimentation et le transfert de données
Broches d'interface : 4 GPIO, 1 GND, 1 alimentation
Pilote : GC9A01
Résolution 240 x 240 pixels
Couleur: 65K RVB
Interface : SPI
Téléchargements
Fichier STEP
Dimensions
Fichier 3D
Schématique
GitHub
L'adaptateur ESP-01 3,3-5 V est la solution idéale pour connecter un module ESP-01 ESP8266 à un système 5 V tel qu'Arduino Uno.
Caractéristiques
Module de connexion pour module WiFi ESP-01
Circuit régulateur de tension 3,3 V et conversion de niveau intégrée pour une utilisation facile du microcontrôleur 5 V avec module Wi-Fi ESP-01
Compatible avec Uno R3
4,5~5,5 V (régulateur LDO 3,3 V intégré)
Tension logique d'interface : compatible 3,3-5 V (décalage de niveau intégré)
Courant : 0-240 mA
Le MLX90640 SparkFun IR Array Breakout dispose d'un réseau 32x24 de capteurs à thermopile qui, essentiellement, génèrent une caméra thermique basse résolution. Grâce à cet outil, vous pouvez observer les températures de surface à une distance considérable avec une précision de ±1,5 °C (dans le meilleur des cas). Cette carte communique via I²C grâce au système Qwiic développé par Sparkfun, qui simplifie le fonctionnement du breakout. Cependant, il existe toujours des broches espacées de 0,1' au cas où vous préféreriez utiliser une planche à pain.
Le système SparkFun Qwiic connect est un écosystème de capteurs, d'actionneurs, de blindages et de câbles I²C qui accélèrent le prototypage et vous aident à éviter les erreurs. Toutes les cartes compatibles Qwiic utilisent un connecteur JST à 4 broches commun au pas de 1 mm. Cela réduit les besoins en espace sur le PCB et les connecteurs polarisés vous aident à tout connecter correctement. Ce IR Array Breakout spécifique offre un champ de vision de 110°×75° avec une plage de mesure de température de -40°C ~ 300°C. Le réseau IR MLX90640 est doté de résistances de rappel sur le bus I²C ; les deux peuvent être retirés en coupant les traces sur les cavaliers correspondants à l'arrière du circuit imprimé. Notez que le MLX90640 nécessite des calculs complexes de la part de la plate-forme hôte, donc un Arduino Uno classique (ou équivalent) ne dispose pas de suffisamment de RAM ou de flash pour effectuer les calculs complexes requis pour convertir les données brutes de pixels en données de température. Vous avez besoin d'un microcontrôleur doté de 20 000 octets ou plus de RAM.
Fonctionnalité, structure et manipulation d'un module de puissance
Pour les lecteurs débutant dans la gestion de l'énergie, l'« Abc des modules de puissance » contient les principes de base nécessaires à la sélection et à l'utilisation d'un module de puissance. Le livre décrit les relations et paramètres techniques liés aux modules de puissance et la base des techniques de calcul et de mesure.
Contenu
Les bases
Ce chapitre décrit la nécessité d'un convertisseur de tension DC/DC et ses fonctionnalités de base. De plus, diverses possibilités de réalisation d'un régulateur de tension sont présentées et les avantages essentiels d'un module de puissance sont mentionnés.
Topologies de circuits
Les concepts de circuits, les topologies Buck et Boost très fréquemment utilisées avec les modules de puissance sont expliqués en détail et d'autres topologies de circuits sont introduites.
Technologie, technologie de construction et de régulation
La construction mécanique d'un module de puissance est présentée, qui a une influence significative sur la CEM et les performances thermiques. De plus, les méthodes de contrôle sont expliquées et des conseils de conception de circuit sont fournis dans ce chapitre.
Méthodes de mesure
Des résultats de mesure significatifs sont absolument nécessaires pour évaluer un module de puissance. Les points de mesure et méthodes de mesure pertinents sont décrits dans ce chapitre.
Manutention
Les aspects de stockage et de manipulation des modules de puissance sont expliqués, ainsi que leurs procédés de fabrication et de soudure.
Sélection d'un module de puissance
Les paramètres et critères importants pour la sélection optimale d'un module de puissance sont présentés dans cette section.
Ce module CAN est basé sur le contrôleur de bus CAN MCP2515 et l'émetteur-récepteur CAN TJA1050. Avec ce module, vous pourrez facilement contrôler n'importe quel appareil CAN Bus par interface SPI avec votre MCU, tel qu'Arduino Uno et ainsi de suite.
Caractéristiques
Prise en charge PEUT V2.0B
Taux de communication jusqu'à 1 Mo/s
Tension de fonctionnement : 5 V
Courant de fonctionnement : 5 mA
Interface : SPI
Téléchargements
Fiche technique MCP2515
Fiche technique TJA1050
La puce ESP32-C3 offre des performances de faible consommation et de fréquence radio de pointe, et prend en charge le protocole Wi-Fi IEEE802.11b/g/n et BLE 5.0. La puce est équipée d'un processeur monocœur RISC-V 32 bits avec une fréquence de fonctionnement allant jusqu'à 160 MHz. Prend en charge le développement secondaire sans utiliser d'autres microcontrôleurs ou processeurs. La puce intègre 400 Ko de SRAM, 384 Ko de ROM, 8 Ko de SRAM RTC et 4 Mo de Flash intégré prend également en charge le Flash externe. La puce prend en charge une variété d'états de fonctionnement à faible consommation d'énergie, qui peuvent répondre aux exigences de consommation d'énergie de divers scénarios d'application. Les caractéristiques uniques de la puce telles que la fonction de déclenchement d'horloge fine, la fonction de réglage dynamique de la fréquence d'horloge de tension et la fonction réglable de la puissance de sortie RF peuvent atteindre le meilleur équilibre entre la distance de communication, le taux de communication et la consommation d'énergie.
Le module ESP-C3-12F fournit une multitude d'interfaces périphériques, notamment UART, PWM, SPI, I²S, I²C, ADC, capteur de température et jusqu'à 15 GPIO. Caractéristiques
Prise en charge du Wi-Fi 802.11b/g/n, débit de données en mode 1T1R jusqu'à 150 Mbps
Supporte BLE5.0, ne prend pas en charge le Bluetooth classique, prise en charge des débits : 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps
Processeur monocœur RISC-V 32 bits, prend en charge une fréquence d'horloge allant jusqu'à 160 MHz, dispose de 400 Ko de SRAM, 384 Ko de ROM, 8 Ko de SRAM RTC
Prise en charge de l'interface UART/PWM/GPIO/ADC/I²C/I²S, prise en charge du capteur de température, compteur d'impulsions
La carte de développement dispose de perles de lampe RVB trois-en-un, ce qui est pratique pour le deuxième développement des clients.
Prend en charge plusieurs modes de veille, le courant de sommeil profond est inférieur à 5 uA
Débit du port série jusqu'à 5 Mbps
Prise en charge du mode STA/AP/STA+AP et du mode promiscuité
Prise en charge de Smart Config (APP)/AirKiss (WeChat) d'Android et iOS, configuration réseau en un clic
Prise en charge de la mise à niveau locale du port série et de la mise à niveau du micrologiciel à distance (FOTA)
Les commandes AT générales peuvent être utilisées rapidement
Prise en charge du développement secondaire, environnement de développement Windows et Linux intégré À propos de la configuration Flash L'ESP-C3-12F utilise par défaut le Flash intégré de 4 Mo de la puce et prend en charge la version Flash externe de la puce.
Module LCD 2x16 caractères (bleu/blanc)
Numéro de broche
Nom de l'épingle
Descriptions
1
VSS
Sol
2
VDD
Tension d'alimentation pour la logique
3
V0
Tension d'entrée pour LCD
4
RS
Sélection du registre de données/instructions (H : signal de données, L : signal d'instruction)
5
R/É
Lecture/écriture (H : mode lecture, L : mode écriture)
6
E
Activer le signal
7
DB0
Bit de données 0
8
DB1
Bit de données 1
9
DB2
Bit de données 2
dix
DB3
Bit de données 3
11
DB4
Bit de données 4
12
DB5
Bit de données 5
13
DB6
Bit de données 6
14
DB7
Bit de données 7
15
LED_A
Anode de rétroéclairage
16
LED_K
Cathode de rétroéclairage