Le SparkFun GPS-RTK2 relève la barre pour un GPS de haute précision et est le dernier d’une gamme de cartes RTK puissantes avec le module ZED-F9P de u-blox. Le ZED-F9P est un module haut de gamme pour des solutions de localisation GNSS et GPS de haute précision, y compris RTK capable de 10mm, précision tridimensionnelle. Avec ce tableau, vous serez en mesure de savoir l’emplacement où votre X, Y, et Z (ou n’importe quel objet) est à peu près la largeur de votre ongle! Le ZED-F9P est unique en son genre en ce sens qu’il est capable d’utiliser des rover et des stations de base. En utilisant notre système pratique Qwiic, aucune soudure n’est nécessaire pour le connecter au reste de votre système. Cependant, nous avons encore des broches espacées de 0,1' si vous préférez utiliser une Platine d'expérimentation. Nous avons même inclus une batterie de secours rechargeable pour maintenir la dernière configuration de module et les données satellite disponibles pendant jusqu’à deux semaines. Cette batterie permet de démarrer le module à chaud, ce qui réduit considérablement le délai avant la première correction. Ce module est doté d’un mode d’aperçu permettant au module de devenir une station de base et de produire des données de correction RTCM 3.x. Le nombre d’options de configuration du ZED-F9P est incroyable ! Géoclôture, adresse I2C variable, taux de mise à jour variables, même la solution RTK de haute précision peut être augmentée à 20Hz. Le GPS-RTK2 dispose même de cinq ports de communication qui sont tous actifs simultanément : USB-C (qui dénombre en tant que port COM), UART1 (avec 3.3V TTL), UART2 pour la réception RTCM (avec 3.3V TTL), I2C (via les deux connecteurs Qwiic ou broches cassées), et SPI. Sparkfun a également écrit une vaste bibliothèque Arduino pour modules u-blox pour lire et contrôler facilement le GPS-RTK2 sur le système Qwiic Connect. Laissez tomber NMEA ! Commencez à utiliser une interface binaire beaucoup plus légère et donnez une pause à votre microcontrôleur (et son seul port série). La bibliothèque SparkFun Arduino montre comment lire la latitude, la longitude, même le cap et la vitesse sur I2C sans avoir besoin de sondages en série constants. Caractéristiques Réception simultanée de GPS, GLONASS, Galileo et BeiDou Reçoit les bandes L1C/A et L2C Tension : 5 V ou 3,3 V, mais toute la logique est de 3,3 V Courant : 68 mA - 130 mA (varie selon les constellations et l’état de suivi) Durée de la première correction : 25 s (froid), 2 s (chaud) Taux de navigation maximal : PVT (emplacement de base sur le protocole binaire UBX) - 25 Hz RTK - 20 Hz Raw - 25 Hz Précision de la position horizontale : 2,5 m sans TKP 0,010 m avec RTK Altitude maximale : 50k m Vitesse maximale : 500 m/s Poids : 6,8 g Dimensions : 43,5 mm x 43,2 mm 2 x connecteurs Qwiic
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications.
Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels.
The HTCC-AB02S is a developer-friendly board with an integrated AIR530Z GPS module, ideal for quickly testing and validating communication solutions.
Features
Arduino compatible
Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262
LoRaWAN 1.0.2 support
Ultra low power design, 21 uA in deep sleep
Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching)
Good impendence matching and long communication distance
Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel
Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures
Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing
Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information
Using Air530 GPS module with GPS/Beidou Dual-mode position system support
Specifications
Main Chip
ASR6502 (48 MHz ARM Cortex-M0+ MCU)
LoRa Chipset
SX1262
Frequency
863~870 MHz
Max. TX Power
22 ±1 dBm
Max. Receiving Sensitivity
−135 dBm
Hardware Resource
2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO
Memory
128 Kb FLASH16 Kb SRAM
Power consumption
Deep sleep 21 uA
Interfaces
1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header)
Battery
3.7 V lithium battery (power supply and charging)
Solar Energy
VS pin can be connected to 5.5~7 V solar panel
USB to Serial Chip
CP2102
Display
0.96" OLED (128 x 64)
Operating temperature
−20~70°C
Dimensions
55.9 x 27.9 x 9.5 mm
Included
1x CubeCell HTCC-AB02S Development Board
1x Antenna
1x 2x SH1.25 battery connector
Downloads
Datasheet
Schematic
GPS module (Manual)
Quick start
GitHub
Basé sur les conceptions SparkFun GPS-RTK2, le SparkFun GPS-RTK-SMA relève la barre pour un GPS de haute précision et est le dernier d’une gamme de cartes RTK puissantes avec le module ZED-F9P de u-blox. Le ZED-F9P est un module haut de gamme pour des solutions de localisation GNSS et GPS de haute précision, y compris RTK qui est capable d’une précision tridimensionnelle de 10mm. Avec ce tableau, vous serez en mesure de savoir l’emplacement de votre X, Y, et Z (ou n’importe quel objet) avec la précision à peu près de la largeur de votre ongle! Le ZED-F9P est unique en son genre dans le sens qu’il est capable d’utiliser des rover et des stations de base. En utilisant notre système pratique Qwiic, aucune soudure n’est nécessaire pour le connecter au reste de votre système. Cependant, nous avons encore des broches espacées de 0,1' si vous préférez utiliser une platine d'expérimentation. Nous avons inclus une batterie de secours rechargeable pour maintenir la dernière configuration de module et les données satellite disponibles jusqu’à deux semaines. Cette batterie permet de démarrer le module à chaud, ce qui réduit considérablement le délai de correction. Ce module est doté d’un mode d’aperçu permettant au module de devenir une station de base et de produire des données de correction RTCM 3.x. Sur la base de vos commentaires, nous avons remplacé le connecteur u.FL et inclus un connecteur SMA dans cette version de la carte. Le nombre d’options de configuration du ZED-F9P est incroyable ! Géoclôture, adresse I²C variable, taux de mise à jour variables, même la solution RTK de haute précision peut être augmentée à 20Hz. Le GPS-RTK2 dispose même de cinq ports de communication qui sont tous actifs simultanément : USB-C (qui dénombre en tant que port COM), UART1 (avec 3.3V TTL), UART2 pour la réception RTCM (avec 3.3V TTL), I²C (via les deux connecteurs Qwiic ou avec broches), et SPI. SparkFun a également écrit une vaste bibliothèque Arduino pour les modules u-blox pour lire et contrôler facilement le GPS-RTK-SMA sur notre système Qwiic Connect. Laissez donc NMEA derrière vous ! Commencez à utiliser une interface binaire beaucoup plus légère et donnez une pause à votre microcontrôleur (et son seul port série). La bibliothèque SparkFun Arduino montre comment lire la latitude, la longitude, même le cap et la vitesse sur I²C sans avoir besoin de sondages en série constants. Caractéristiques : Réception simultanée de GPS, GLONASS, Galileo et BeiDou Reçoit les bandes L1C/A et L2C Tension : 5 V ou 3,3 V, mais toute la logique est de 3,3 V Courant : 68 mA - 130 mA (varie selon les constellations et l’état de suivi) Durée de la première correction : 25 s (froid), 2 s (chaud) Taux de navigation maximal : PVT (emplacement de base sur le protocole binaire UBX) - 25 Hz RTK - 20 Hz Raw - 25 Hz Précision de la position horizontale : 2,5 m sans TKP 0,010 m avec RTK Altitude maximale : 50 km Vitesse maximale : 500 m/s Poids : 6,8 g Dimensions : 43,5 mm x 43,2 mm 2 x connecteurs Qwiic
Cette antenne GPS/GNSS exceptionnelle est conçue pour la réception GPS et GLONASS. Le support magnétique permet de le monter facilement sur une base métallique comme une plaque de sol ou un toit de voiture. L’antenne se termine par un câble de 3m et un connecteur SMA standard. Caractéristiques : Dimensions : 50x38x17mm Poids : 75 g, câble de 3 m compris Gamme de fréquences : 1575 - 1610MHz Fréquence du centre GPS : 1575,42 MHz Fréquence du centre GLONASS : 1602MHz Tension LNA : 3 à 5 VCC Gain LNA : 28 dB Courant LNA : 10 mA Connecteur de terminaison : SMA Impédance : 50Ω Polarisation à droite Longueur du câble : 3 mètres
Caractéristiques
Prise en charge les protocoles NMEA et U-Blox 6.
Faible consommation d'énergie
Taux de bauds configurables
Interface Grove UART
Spécifications
...AntennesAntenne incluse.
Dimensions
40 mm x 20 mm x 13 mm
Taux de mise à jour
1 Hz, max 10 Hz
Taux de bauds
9.600 - 115.200
Tension d'entrée
3,3 V / 5 V
Sensibilité de navigation
-160 dBm
Préférences d'alimentation
3.3/5 V
Nombre de canaux
22 suivis, 66 canaux
Durée du premier démarrage
Démarrage à froid : 13 sDémarrage à chaud : 1-2 sDémarrage à chaud : < ; 1 s
Précision
Précision de la position horizontale du GPS à 2,5 m
La carte FPGA iCEBreaker est une carte de développement FPGA éducative open source.
L'iCEBreaker est idéal pour les cours et les ateliers enseignant l'utilisation du flux de conception FPGA open source via Yosys , nextpnr , IceStorm , Icarus Verilog , Amaranth HDL et autres. Cela signifie que le tableau est peu coûteux et dispose d’un ensemble de fonctionnalités intéressantes pour permettre la conception de cours et d’exercices d’atelier intéressants. En même temps, cela permet à l'utilisateur d'utiliser les outils propriétaires du fournisseur s'il le souhaite.
Après l'atelier, les cartes peuvent être facilement utilisées comme carte de développement car la plupart des GPIO sont exposés, décomposés et configurables via des cavaliers à l'arrière de la carte. Il n'y a qu'un nombre minimal de boutons et de LED qui ne peuvent pas être déconnectés et utilisés à vos propres fins.
Documentation
Atelier
'À bord de chaque moto:bit se trouvent plusieurs broches d’E/S, ainsi qu’un connecteur Qwiic vertical, capable de brancher des servomoteur, des capteurs et d’autres circuits. En appuyant sur le bouton, vous pouvez faire bouger votre micro:bit ! Le moto:bit se connecte au micro:bit via un SMD mis à jour, connecteur de bord en haut de la carte, ce qui facilite la configuration. Cela crée un moyen pratique d’échanger micro:bits pour la programmation tout en fournissant des connexions fiables à toutes les différentes broches sur le micro:bit. Nous avons également inclus un connecteur d’alimentation coaxial de base sur la moto:bit qui est capable de fournir de l’énergie à tout ce que vous connectez à la carte de support. Caractéristiques : Connecteur Edge plus fiable pour une utilisation facile avec le micro:bit Full H-Bridge pour la commande de deux moteurs Commande des servomoteurs Connecteur Qwiic vertical Port I2C pour étendre les fonctionnalités Gestion de l’alimentation et de la batterie à bord pour le micro:bit'
Le LuckFox Pico Ultra est un ordinateur monocarte compact (SBC) équipé du chipset Rockchip RV1106G3, conçu pour le traitement de l'IA, le multimédia et les applications embarquées basse consommation.
Il est équipé d'un processeur NPU 1 TOPS intégré, ce qui le rend idéal pour les charges de travail d'IA de pointe. Avec 256 Mo de RAM, 8 Go de stockage eMMC intégré, le Wi-Fi intégré et la prise en charge du module PoE LuckFox, la carte offre performances et polyvalence pour une large gamme d'utilisations.
Sous Linux, la LuckFox Pico Ultra prend en charge diverses interfaces, notamment MIPI CSI, RGB LCD, GPIO, UART, SPI, I²C et USB, offrant ainsi une plateforme de développement simple et efficace pour les applications de domotique, de contrôle industriel et d'IoT.
Spécifications
Puce
Rockchip RV1106G3
Processeur
Cortex-A7 1,2 GHz
Processeur de réseau neuronal (NPU)
1 TOPS, compatible int4, int8, int16
Processeur d'image (ISP)
Entrée max. 5 Mo à 30fps
Mémoire
256 Mo DDR3L
Wi-Fi + Bluetooth
WiFi-6 2,4 GHz Bluetooth 5.2/BLE
Interface caméra
MIPI CSI 2 voies
Interface DPI
RGB666
Interface PoE
IEEE 802.3af PoE
Interface haut-parleur
MX1,25 mm
USB
Hôte/Périphérique USB 2.0
GPIO
30 GPIO Broches
Ethernet
Contrôleur Ethernet 10/100M et PHY intégré
Support de stockage par défaut
eMMC (8 Go)
Inclus
1x LuckFox Pico Ultra W
1x Module PoE LuckFox
1x Antenne IPX 2,4G 2 dB
1x Câble USB-A vers USB-C
1x Sachet de vis
Téléchargements
Wiki
Waveshare CoreEP4CE10 est une carte mère FPGA dotée d'un périphérique EP4CE10F17C8N intégré prenant en charge une extension ultérieure.
Caractéristiques
Dispositif de configuration série intégré EPCS16SI8N
Circuit de base FPGA intégré, tel qu'un circuit d'horloge
Bouton nCONFIG intégré, bouton RESET, 4x LED
Tous les ports E/S sont accessibles sur les connecteurs broches
Interface de débogage/programmation JTAG intégrée
Conception au pas de collecteur de 2,00 mm, adaptée au branchement de votre système d'application
Téléchargements
Wikia
The FRDM-MCXN947 is a compact and versatile development board designed for rapid prototyping with MCX N94 and N54 microcontrollers. It features industry-standard headers for easy access to the MCU's I/Os, integrated open-standard serial interfaces, external flash memory, and an onboard MCU-Link debugger.
Spécifications
Microcontroller
MCX-N947 Dual Arm Cortex-M33 cores @ 150 MHz each with optimized performance efficiency, up to 2 MB dual-bank flash with optional full ECC RAM, External flash
Accelerators: Neural Processing Unit, PowerQuad, Smart DMA, etc.
Memory Expansion
*DNP Micro SD card socket
Connectivity
Ethernet Phy and connector
HS USB-C connectors
SPI/I²C/UART connector (PMOD/mikroBUS, DNP)
WiFi connector (PMOD/mikroBUS, DNP)
CAN-FD transceiver
Debug
On-board MCU-Link debugger with CMSIS-DAP
JTAG/SWD connector
Sensor
P3T1755 I³C/I²C Temp Sensor, Touch Pad
Expansion Options
Arduino Header (with FRDM expansion rows)
FRDM Header
FlexIO/LCD Header
SmartDMA/Camera Header
Pmod *DNP
mikroBUS
User Interface
RGB user LED, plus Reset, ISP, Wakeup buttons
Inclus
1x FRDM-MCXN947 Development Board
1x USB-C Cable
1x Quick Start Guide
Téléchargements
Datasheet
Block diagram
Le SparkFun Power Delivery Board utilise un contrôleur autonome pour négocier avec les adaptateurs d’alimentation et passer à une tension supérieure autre que 5V. Il utilise le même adaptateur d’alimentation pour différents projets plutôt que de compter sur plusieurs adaptateurs d’alimentation pour fournir une sortie différente; il peut fournir la carte dans le cadre du système de connexion Qwiic de SparkFun, de sorte que vous n’aurez pas à faire de soudure pour comprendre comment les choses sont orientées. Le SparkFun Power Delivery Board tire parti de la norme de distribution d’alimentation à l’aide d’un contrôleur autonome de STMicroelectronics, le STUSB4500. Le STUSB4500 est un contrôleur de distribution d’alimentation USB qui traite les appareils récepteur de données. Il met en œuvre un algorithme propriétaire pour négocier un contrat de distribution d’électricité avec une source (c.-à-d. une prise murale de distribution d’électricité ou un adaptateur d’alimentation) sans avoir besoin d’un microcontrôleur externe. Cependant, vous aurez besoin d’un microcontrôleur pour configurer la carte. Les profils PDO sont configurés dans une mémoire non volatile intégrée. Le contrôleur fait tout le poids de la négociation de puissance et fournit un moyen facile de configurer sur I2C. Pour configurer la carte, vous aurez besoin d’un bus I2C. Le système Qwiic facilite la connexion de la carte d’alimentation à un microcontrôleur. Selon votre application, vous pouvez également vous connecter au bus I2C via les trous SDA et SCL. Caractéristiques : Plage de tension d’entrée et de sortie de 5-20V Courant de sortie jusqu’à 5A Trois profils d’alimentation configurables Commande automatique de l’évier Type-C™ et USB PD Certifié USB Type-C™ rév. 1.2 et USB PD rév. 2.0 (TID n° 1000133) Surveillance intégrée de la tension VBUS Pilotes de porte de commutation VBUS intégrés (PMOS)'