Le kit Dragino LoRaWAN IoT Kit v3 est conçu pour permettre aux débutants et aux développeurs d'apprendre et de démontrer rapidement la technologie LoRa/LoRaWAN et IoT. Il aide les utilisateurs à transformer une idée en une application pratique, faisant de l'Internet des objets une réalité.Le kit LoRaWAN IoT v3 peut être utilisé pour évaluer des solutions LoRaWAN multicanal et des solutions LoRa privées à canal unique. Les utilisateurs peuvent également utiliser le kit LoRaWAN IoT v3 pour tester différentes configurations de structures de réseau, afin de trouver celle qui convient le mieux à leur solution IoT.Le Kit LoRaWAN IoT v3 montre comment construire un réseau LoRaWAN et comment utiliser le réseau pour envoyer des données d'un nœud de capteur LoRa vers le serveur cloud. En fonction de l'environnement d'utilisation réel, la passerelle LoRaWAN peut connecter vos autres nœuds LoRa jusqu'à environ 500 ~ 5000 mètres.
Caractéristiques
Kits LoRa/LoRaWAN open source
Prend en charge LoRaWAN multicanal et LoRa monocanal
Prise en charge de diverses structures de réseau
Inclus
1x passerelle LoRaWAN LPS8v2
1x bouclier LA66 LoRaWAN pour Arduino
1x adaptateur USB LoRaWAN LA66 pour PC/Mobile/RPi
1x capteur de température et d'humidité DHT11
1x LED RVB
20x câble Dupont (mâle à mâle)
20x câble Dupont (femelle à femelle)
20x câble Dupont (mâle à femelle)
Téléchargements
Fiche de données
Manuel
Cette antenne extérieure en fibre de verre est optimisée pour recevoir des signaux dans la bande ISM de 868 MHz, prenant en charge des technologies telles que Sigfox, LoRa, Mesh Networks et Helium. L'antenne se compose d'un dipôle demi-onde avec un gain de 4,4 dBi, encapsulé à l'intérieur d'un radôme en fibre de verre avec une base de montage en aluminium.
Spécifications
Fréquence
868-870 MHz
Type d'antenne
Dipôle 1/2 onde
Connecteur
N femelle
Type d'installation
Diamètre du mât 35-60 mm (support de montage inclus)
Gagner
4,4 dBi
SWR
≤1,5
Type de polarisation
Vertical
Puissance maximale
10 W
Impédance
50 Ohms
Dimensions
52,5 cm
Diamètre du tube
26 mm
Antenne de base
32 mm
Température de fonctionnement
−30°C à +60°C
Inclus
Antenne bande ISM (868 Mhz)
Support de mât (pour installation sur un mât de 35 à 60 mm de diamètre)
L'unPhone est une plateforme de développement IoT open-source alimentée par le microcontrôleur ESP32S3. Il dispose d'une connectivité LoRa, Wi-Fi et Bluetooth intégrée, d'un écran tactile et d'une batterie LiPo, offrant une solution robuste et polyvalente pour le développement IoT. Sa compatibilité avec le standard FeatherWing d'Adafruit permet une expansion facile, ce qui en fait un choix idéal pour les éducateurs, les makers et les développeurs à la recherche d'une plateforme flexible et conviviale.
Caractéristiques
Microcontrôleur ESP32S3 (avec 8 Mo de mémoire Flash et 8 Mo de PSRAM)
Communication radio sans licence LoRaWAN (plus l'excellente prise en charge Wi-Fi et Bluetooth de l'ESP32)
Écran tactile capacitif LCD de 3,5 pouces (320 x 480) pour un débogage et une création d'interface utilisateur faciles
LED IR pour éteindre subrepticement le téléviseur du café
Batterie LiPo de 1200 mAh avec chargement USB-C
Moteur de vibration pour les notifications
Boussole/Accéléromètre
Un boîtier robuste
Emplacement pour carte SD
Boutons d'alimentation et de réinitialisation
Programmable en C++ ou CircuitPython
Carte d'extension prenant en charge deux sockets Featherwing et une zone de prototypage
Micrologiciel Open Source compatible avec l'IDE Arduino, PlatformIO et le framework de développement IDF d'Espressif
Inclus
unPhone (assemblé)
Carte d'extension
Câble FPC (pour relier la carte d'extension à unPhone)
Supports autocollants pour la carte d'extension
Exemples de code
C++ library
Kick the tyres on everything in the box
The main LVGL demo
CircuitPython
Support forum
Textbook (especially chapter 11)
LoRaWAN s'est remarquablement développé en tant que solution de communication dans l'IdO. The Things Network (TTN) y a contribué. The Things Network a été mis à niveau vers The Things Stack Community Edition (TTS (CE)). Les clusters TTN V2 ont été fermés vers la fin de l'année 2021.
Ce livre vous explique les étapes nécessaires pour exploiter les n?uds LoRaWAN à l'aide de TTS (CE) et peut-être étendre le réseau de passerelles avec votre propre passerelle. Entre-temps, il existe même des passerelles LoRaWAN adaptées à une utilisation mobile avec lesquelles vous pouvez vous connecter au serveur TTN via votre téléphone portable.
L'auteur présente plusieurs n?uds LoRaWAN commerciaux et un nouveau matériel peu coûteux et alimenté par batterie pour construire des n?uds LoRaWAN autonomes. L'enregistrement des n?uds et des passerelles LoRaWAN dans le TTS (CE), la transmission des données collectées via MQTT et la visualisation via Node-RED, Cayenne, Thingspeak et Datacake permettent de réaliser des projets IdO complexes et des applications inédites à très faible coût.
Ce livre vous permettra de fournir et de visualiser les données collectées avec des capteurs alimentés par batterie (n?uds LoRaWAN) sans fil sur Internet. Vous apprendrez les bases des applications de villes intelligentes et d'IdO qui permettent, entre autres, de mesurer la qualité de l'air, le niveau de l'eau, l'épaisseur de la neige, de déterminer les places de stationnement libres (smart parking) et de contrôler intelligemment l'éclairage public.
Cette version radio 900 MHz peut être utilisée pour l'émission/réception à 868 MHz ou à 915 MHz ? la fréquence radio exacte est déterminée lorsque vous chargez le logiciel puisqu'elle peut être réglée de façon dynamique.
Au c?ur du Feather 32u4 se trouve un ATmega32u4 cadencé à 8 MHz et à 3,3 V logique. Cette puce a 32 K de flash et 2 K de RAM, avec USB intégré, non seulement a une capacité de débogage de programme vec USB vers série intégrée sans avoir besoin d'une puce de type FTDI, mais elle peut également faire office de souris, de clavier, de dispositif MIDI USB, etc.
Pour faciliter son utilisation dans le cadre de projets portables, nous avons ajouté un connecteur pour n'importe quelle batterie lithium-polymère de 3,7 V et intégré la charge de la batterie. Vous n'avez pas besoin de batterie, il fonctionnera très bien directement à partir du connecteur micro USB. Mais, si vous avez une batterie, vous pouvez la porter avec vous, puis brancher le connecteur USB pour la recharger. Le Feather basculera automatiquement vers l'alimentation USB dès qu'elle sera disponible. Nous avons également lié la batterie à travers un diviseur à une broche analogique, de sorte que vous pouvez mesurer et surveiller la tension de la batterie pour savoir quand vous avez besoin de la recharger.
Caractéristiques
Dimension 2,0 x 0,9 x 0,28 pouce (51 x 23 x 8 mm) sans les connecteurs soudées
Léger comme une ( grande ?) plume - 5,5 g
ATmega32u4 @ 8 MHz avec logique/alimentation 3.3 V
Régulateur 3,3 V avec sortie de courant de crête de 500 mA
Prise en charge de l'USB, livré avec un bootloader USB et débogage via port série
Vous obtenez également des tonnes de broches - 20 broches GPIO
Interface série, I²C, SPI
7x broches PWM
10x entrées analogiques
Chargeur lipoly intégré de 100 mA avec LED d'indication de l'état de charge
Pin #13 LED rouge pour le clignotement à usage général
Broche d'alimentation/activation
4 trous de montage
Bouton de réinitialisation
La radio Feather 32u4 utilise l'espace restant pour ajouter un module radio RFM69HCW 868/915 MHz. Ces radios ne sont pas bonnes pour transmettre de l'audio ou de la vidéo, mais elles fonctionnent assez bien pour la transmission de petits paquets de données lorsque vous avez besoin de plus de portée que 2,4 GHz (BT, BLE, WiFi, ZigBee)
Module basé sur le SX1231 avec interface SPI
Radiocommunication par paquets avec des bibliothèques Arduino prêtes à l'emploi
Utilise la bande ISM non soumise a des reglementation ("ISM européen" @ 868 MHz ou "ISM américain" @ 915 MHz)
+13 à +20 dBm jusqu'à 100 mW de capacité de sortie de puissance (sortie de puissance sélectionnable par le logiciel)
Appel de courant de 50 mA (+13 dBm) à 150 mA (+20 dBm) pour les transmissions
Portée d'environ 350 mètres, selon les obstructions, la fréquence, l'antenne et la puissance de sortie
Créer des réseaux multipoints avec des adresses de n?uds individuels
Moteur de paquets cryptés avec AES-128
Antenne filaire simple ou point pour connecteur uFL
Il est livré entièrement assemblé et testé, avec un bootloader USB qui vous permet de l'utiliser rapidement avec l'IDE Arduino. Des connecteurs sont également incluses pour que vous puissiez le souder et le brancher sur une platine d'essai sans soudure. Vous devrez couper et souder un petit morceau de fil (n'importe quel conducteur solide ou toronné est parfait) afin de créer votre antenne.
La batterie Lipoly et le câble USB ne sont pas inclus.
La carte de développement AVR-IoT WA combine un puissant microcontrôleur AVR ATmega4808, un circuit intégré d'élément sécurisé CryptoAuthentication™ ATECC608A et le contrôleur réseau Wi-Fi ATWINC1510 entièrement certifié, qui fournit le moyen le plus simple et le plus efficace de connecter votre application intégrée à Amazon Web Services ( AWS). La carte comprend également un débogueur intégré et ne nécessite aucun matériel externe pour programmer et déboguer le MCU.
Prêt à l'emploi, le MCU est préchargé avec une image de micrologiciel qui vous permet de vous connecter et d'envoyer rapidement des données à la plateforme AWS à l'aide des capteurs de température et de lumière intégrés. Une fois que vous êtes prêt à créer votre propre conception personnalisée, vous pouvez facilement générer du code à l'aide des bibliothèques de logiciels gratuits d'Atmel START ou de MPLAB Code Configurator (MCC).
La carte AVR-IoT WA est prise en charge par deux environnements de développement intégrés (IDE) primés – Atmel Studio et Microchip MPLAB X IDE – vous donnant la liberté d'innover avec l'environnement de votre choix.
Caractéristiques
Microcontrôleur ATmega4808
Quatre LED utilisateur
Deux boutons mécaniques
Empreinte de l'en-tête mikroBUS
Capteur de lumière TEMT6000
Capteur de température MCP9808
Dispositif CryptoAuthentication™ ATECC608A
Module Wi-Fi WINC1510
Débogueur intégré
Auto-ID pour l'identification de la carte dans Atmel Studio et Microchip MPLAB
Une LED verte d'alimentation et d'état de la carte
Programmation et débogage
Port COM virtuel (CDC)
Deux lignes DGI GPIO
Alimenté par USB et par batterie
Chargeur de batterie Li-Ion/LiPo intégré
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications.
Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels.
The HTCC-AB02 is a developer-friendly board, ideal for quickly testing and validating communication solutions.
Features
Arduino compatible
Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262
LoRaWAN 1.0.2 support
Ultra low power design, 3.5 uA in deep sleep
Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching)
Good impendence matching and long communication distance
Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel
Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures
Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing
Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information
Specifications
Main Chip
ASR6502 (48 MHz ARM Cortex-M0+ MCU)
LoRa Chipset
SX1262
Frequency
863~870 MHz
Max. TX Power
22 ±1 dBm
Max. Receiving Sensitivity
−135 dBm
Hardware Resource
2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO
Memory
128 Kb FLASH16 Kb SRAM
Power consumption
Deep sleep 3.5 uA
Interfaces
1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header)
Battery
3.7 V lithium battery (power supply and charging)
Solar Energy
VS pin can be connected to 5.5~7 V solar panel
USB to Serial Chip
CP2102
Display
0.96" OLED (128 x 64)
Operating temperature
−20~70°C
Dimensions
51.9 x 25 x 8 mm
Included
1x CubeCell HTCC-AB02 Development Board
1x Antenna
1x 2x SH1.25 battery connector
Downloads
Datasheet
Schematic
Quick start
GitHub
Le T-Deck est un gadget de poche doté d'un écran LCD IPS de 2,8 pouces (320 x 240), d'un mini-clavier et d'un processeur double cœur ESP32. Bien qu’il ne s’agisse pas vraiment d’un smartphone, il offre beaucoup de potentiel aux passionnés de technologie. Avec un peu de savoir-faire en programmation, vous pouvez le transformer en un appareil de messagerie autonome ou en une plateforme de codage portable.
Spécifications
Microcontrôleur
Microprocesseur LX7 double cœur ESP32-S3FN16R8
Connectivité sans fil
Wi-Fi 2,4 GHz & Bluetooth 5 (LE)
Développement
Arduino, PlatformlO, MicroPython
Flash
16 Mo
PSRAM
8 Mo
Broche ADC de la batterie
IO04
Fonctions intégrées
Trackball, microphone, haut-parleur
Affichage
Interface IPS ST7789 SPI 2,8"
Résolution
320 x 240 (angle de vision complet)
Puissance de transmission
+22 dBm
Émetteur-récepteur LoRa SX1262 (fréquence)
868 MHz
Dimensions
100 x 68 x 11 mm
Inclus
1x T-Deck ESP32-S3 LoRa
1x Antenne FPC (868 MHz)
1x Broche mâle (6 broches)
1x Câble d'alimentation
Téléchargements
GitHub
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications.
Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels.
The HTCC-AB02S is a developer-friendly board with an integrated AIR530Z GPS module, ideal for quickly testing and validating communication solutions.
Features
Arduino compatible
Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262
LoRaWAN 1.0.2 support
Ultra low power design, 21 uA in deep sleep
Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching)
Good impendence matching and long communication distance
Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel
Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures
Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing
Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information
Using Air530 GPS module with GPS/Beidou Dual-mode position system support
Specifications
Main Chip
ASR6502 (48 MHz ARM Cortex-M0+ MCU)
LoRa Chipset
SX1262
Frequency
863~870 MHz
Max. TX Power
22 ±1 dBm
Max. Receiving Sensitivity
−135 dBm
Hardware Resource
2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO
Memory
128 Kb FLASH16 Kb SRAM
Power consumption
Deep sleep 21 uA
Interfaces
1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header)
Battery
3.7 V lithium battery (power supply and charging)
Solar Energy
VS pin can be connected to 5.5~7 V solar panel
USB to Serial Chip
CP2102
Display
0.96" OLED (128 x 64)
Operating temperature
−20~70°C
Dimensions
55.9 x 27.9 x 9.5 mm
Included
1x CubeCell HTCC-AB02S Development Board
1x Antenna
1x 2x SH1.25 battery connector
Downloads
Datasheet
Schematic
GPS module (Manual)
Quick start
GitHub
Des éclairages télécommandés - changez la couleur, les modes d'éclairage et allumez/éteignez via votre mobile
Station météo personnelle - enregistrez et surveillez les conditions météorologiques locales
Système d'alarme de sécurité - Détectez les mouvements et déclenchez des alertes
Système de suivi solaire - récupérez les données des planètes et des lunes du système solaire
Contrôle des stocks - suivez les entrées & les sortie
Jardin intelligent - surveillez et contrôlez l'environnement de vos plantes
Contrôle du thermostat - contrôle intelligent des systèmes de chauffage et de refroidissement
On pense à vous - envoyer des messages entre l'Oplà et l'Arduino IoT Cloud
Pour les utilisateurs plus avancés, le kit leur offre la possibilité de créer leurs propres appareils connectés et applications IoT grâce à la plateforme programmable ouverte offrant le contrôle ultime.
L'unité Oplà agit comme l'interface physique avec l'Arduino IoT Cloud vous fournissant un contrôle total à portée de main via l'application Arduino IoT Remote. Configurez et gérez tous les paramètres via le Arduino IoT Cloud, avec des tableaux de bord faciles à créer fournissant des relevés en temps réel à partir de vos appareils intelligents autour de la maison ou du lieu de travail.
L'ajustement des paramètres, la mise en marche et l'arrêt des appareils, l'arrosage des plantes, etc. sont tous contrôlables même en déplacement, avec l'application Arduino IoT Remote ou vous pouvez automatisez entièrement la configuration puis détendez-vous et profitez
Inclus
MKR IoT Carrier conçu pour ce kit, comprenant:
Écran OLED rond
Cinq boutons tactiles capacitifs
Capteurs embarqués (température, humidité, pression et lumière)
Deux relais de 24 V
Support de carte SD
Connecteurs plug and play pour différents capteurs
RGBC, Geste, et Proximité
IMU
18650 Li-Ion support de batterie rechargeable (batterie non incluse)
Five RGB LEDs
Arduino MKR WiFi 1010
Boîtier en plastique
Câble Micro USB
Capteur d'humidité
Capteur PIR
Câbles plug and play pour tous les capteurs
Applications
Des éclairages télécommandés
Station météo personnelle
Système d'alarme de sécurité
Système de suivi solaire
Contrôle des stocks
Jardin intelligent
Contrôle du thermostat
On pense à vous
Le LDS02 est alimenté par 2 piles AAA et vise une utilisation de longue durée. Ces deux piles peuvent fournir environ 16 000 à 70 000 paquets de liaison montante. Une fois les piles épuisées, l'utilisateur peut facilement ouvrir le boîtier et les remplacer par 2 piles AAA courantes.
Il enverra des données périodiquement chaque jour ainsi que pour chacun par action d'ouverture/fermeture. Il compte également les temps d'ouverture des portes et calcule la durée de la dernière porte ouverte. L'utilisateur peut également désactiver la liaison montante pour chaque événement d'ouverture/fermeture, mais l'appareil peut compter périodiquement chaque événement ouvert et chaque liaison montante. Il dispose également de la fonction d'alarme d'ouverture, l'utilisateur peut définir cette fonction pour que l'appareil envoie une alarme si la porte est ouverte depuis un certain temps. Chaque LDS02 est préchargé avec un ensemble de clés uniques pour l'enregistrement LoRaWAN, enregistrez ces clés sur le serveur LoRaWAN et il se connectera automatiquement après la mise sous tension.
Caractéristiques
LoRaWAN v1.0.3 Classe A
Noyau LoRa SX1262
Par détection d'ouverture/fermeture
2 piles AAA LR03
Par statistiques d'ouverture/fermeture
Commandes AT pour modifier les paramètres
Liaison montante activée périodiquement et action d'ouverture/fermeture
Alarme de durée d'ouverture
Lien descendant pour modifier la configuration
Applications
Systèmes d'alarme et de sécurité sans fil
Domotique et domotique
Surveillance et contrôle industriels
DLOS8 est une passerelle LoRaWAN d'extérieur open source. Elle vous permet de relier un réseau sans fil LoRa et un réseau IP via Ethernet, WiFi ou 3G. Le système sans fil LoRa permet aux utilisateurs d'envoyer des données et d'atteindre des portées extrêmement longues à des débits de données faibles.
DLOS8 utilise un transmetteur de paquets Semtech et est entièrement compatible avec le protocole LoRaWAN. Il comprend un concentrateur LoRaWAN SX1301, qui fournit dix voies de démodulation parallèles programmables.
DLOS8 dispose de bandes de fréquences LoRaWAN standard préconfigurées à utiliser pour différents pays. L'utilisateur peut également personnaliser les bandes de fréquences à utiliser dans son réseau LoRaWAN.
DLOS8 peut communiquer avec le n?ud d'extrémité ABP LoRaWAN sans serveur. L'intégrateur de système peut l'utiliser pour intégrer son service IdO existant sans mettre en place son propre serveur LoRaWAN ou utiliser un service tiers.
Caractéristiques
Géré par SSH via LAN ou WiFi, Web GUI
Système Open Source OpenWrt
Emule les démodulateurs LoRa 49x
Passerelle d'extérieure LoRaWAN
Filtrage des paquets LoRaWAN
Dix voies de démodulation parallèles programmables
Indicateur LED de vision lointaine
Antenne externe en fibre de verre
Module GPS intégré pour la localisation et la synchronisation
802.3af PoE
IP65
Protection de l'éclairage
Consommation électrique : 12 V, 300 mA ~ 500 mA
Ports 10M / 100M RJ45 Ports
1x port hôte USB
2.4G WiFi (802.11 bgn)
Applications
Logistique et gestion de la chaîne
Bâtiments intelligents et domotique
Compteurs intelligents
Villes intelligentes
Agriculture intelligente
Usine intelligente
Téléchargements
Datasheet
User Manual
Firmware
Mechanical