ATOM U est un kit de développement IdO compact à faible consommation d’énergie pour la reconnaissance vocale. Il utilise un puce ESP32, dotée de 2 microprocesseurs Xtensa 32 bits LX6 à faible consommation, dont la fréquence principale peut atteindre 240 MHz. Interface USB-A intégrée, émetteur IR, LED RGB programmable. Plug-and-play, facile à charger et à télécharger des programmes. Wi-Fi intégré et microphone numérique SPM1423 (I2S) pour un enregistrement sonore clair. Adapté aux IHM, Speech-to-Text (STT). Développement Low-code development L’ATOM U prend en charge la plateforme de programmation graphique UIFlow, sans script, en mode « cloud push ». Entièrement compatible avec Arduino, MicroPython, ESP32-IDF et d’autres plateformes de développement courantes, elle permet de créer rapidement diverses applications. L’ATOM U est doté d’un port USB-A pour la programmation/l’alimentation, d’un émetteur infrarouge, d’une LED RGB programmable x1, d’un bouton x1. Un circuit RF finement ajusté permet une communication sans fil stable et fiable. Grande capacité d’extension ATOM U permet d’accéder facilement au système matériel et logiciel de M5Stack. Caractéristiques ESP32-PICO-D4 ( Wi-Fi 2.4GHz à mode double ) LED RGB et bouton programmables intégrés Design compact Émetteur IR intégré Brochage extensible et port GROVE Plate-forme de développement : UIFlow MicroPython Arduino Spécifications ESP32-PICO-D4 240 MHz dual core, 600 DMIPS, 520 KB SRAM, 2.4 G Wi-Fi Microphone SPM1423 Sensibilité du microphone Valeur caractéristique 94 dB SPL@1 KHz : -22 dBFS Rapport signal/bruit du microphone 94 dB SPL@1 KHz, A-weighted Typical value: 61.4 dB Courant de travail en veille 40.4 mA Fréquence sonore d'entrée 100 Hz ~ 10 KHz Fréquence d'horloge PDM 1.0 ~ 3.25 MHz Poids 8.4 g Taille du produit 52 x 20 x 10 mm Téléchargements Documentation
Le kit de développement M5Stack Core Ink est un nouvel écran E-Ink qui utilise un ESP32-Pico-D4 pour profiter des avantages de la technologie E-Ink. Les écrans E-Ink sont plus agréables pour les yeux, ont une consommation d’énergie extrêmement faible et peuvent conserver une image même après une panne de courant.
Caractéristiques
Fonctions sans fil standard ESP32 WiFi, Bluetooth
Flash interne 4M
Affichage basse consommation
Angle de vision de 180 degrés
Ports d'extension
Aimant intégré
Batterie interne
Bouton multifonction
LED d'état
Avertisseur sonore
Fonctionnalité de veille profonde
Applications
Terminal IdO
Livre électronique
Panneau de commande industriel
Étiquette électronique
Inclus
1x CoreInk
1x LiPo 390mAh
1x USB Type-C (20 cm)
Remarque : évitez les rafraîchissements à haute fréquence de longue durée lors de son utilisation. L'intervalle de rafraîchissement recommandé est de (15 s/heure). Ne pas exposer aux rayons ultraviolets pendant une longue période, sinon cela pourrait causer des dommages irréversibles à l'écran à encre.
iv>
Caractéristiques
Processeur double cœur RISC-V RV64IMAFDC (RV64GC) 64 bits / 400 MHz (normal)
Double FPU indépendant à double précision
SRAM sur puce de 8 Mo, 64 bits de largeur
Processeur de réseau neuronal (KPU) / 0,8Tops
Réseau d'E/S programmable sur site (FPIOA)
AES, accélérateur SHA256
Contrôleur d'accès direct à la mémoire (DMAC)
Prise en charge des micropythons
Prise en charge du cryptage du micrologiciel
Matériel embarqué :
Flash : 16 M Appareil photo : OV7740
2x Boutons
Indicateur d'état LED
Stockage externe : carte TF/Micro SD
Interface : HY2.0/compatible GROVE
Applications
Reconnaissance/détection de visage
Détection/classification d'objets
Obtenez la taille et les coordonnées de la cible en temps réel
Obtenez le type de cible détectée en temps réel
Reconnaissance de forme Enregistreur vidéo
Inclus
1x UNIT-V (comprend un câble 4P de 20 cm et un câble USB-C)
Ce module CAN est basé sur le contrôleur de bus CAN MCP2515 et l'émetteur-récepteur CAN TJA1050. Avec ce module, vous pourrez facilement contrôler n'importe quel appareil CAN Bus par interface SPI avec votre MCU, tel qu'Arduino Uno et ainsi de suite.
Caractéristiques
Prise en charge PEUT V2.0B
Taux de communication jusqu'à 1 Mo/s
Tension de fonctionnement : 5 V
Courant de fonctionnement : 5 mA
Interface : SPI
Téléchargements
Fiche technique MCP2515
Fiche technique TJA1050
L'ESP8266 est un module WiFi impressionnant et abordable, adapté pour ajouter des fonctionnalités wifi à un projet a microcontrôleur existant via une connexion série UART. Le module peut même être reprogrammé pour agir comme un appareil autonome connecté au wifi– il suffit de l'alimenter ! Protocole 802.11 b/g/n wifi Direct (P2P), soft-AP Pile de protocole TCP/IP intégrée Ce module est un SOC ( système sur puce) autonome qui ne nécessite pas un microcontrôleur pour contrôler ses entrées et sorties comme vous le feriez normalement avec un Arduino, par exemple, car l'ESP-01 agit comme un nano ordinateur. Ainsi, vous pouvez donner à votre microcontrôleur un accès à Internet comme avec un shield wifi pour Arduino, ou vous pouvez simplement programmer l'ESP8266 pour qu'il ait non seulement accès à un réseau wifi, mais qu'il agisse également comme un microcontrôleur, ce qui rend l'ESP8266 très polyvalent.
Module LCD 2x16 caractères (bleu/blanc)
Numéro de broche
Nom de l'épingle
Descriptions
1
VSS
Sol
2
VDD
Tension d'alimentation pour la logique
3
V0
Tension d'entrée pour LCD
4
RS
Sélection du registre de données/instructions (H : signal de données, L : signal d'instruction)
5
R/É
Lecture/écriture (H : mode lecture, L : mode écriture)
6
E
Activer le signal
7
DB0
Bit de données 0
8
DB1
Bit de données 1
9
DB2
Bit de données 2
dix
DB3
Bit de données 3
11
DB4
Bit de données 4
12
DB5
Bit de données 5
13
DB6
Bit de données 6
14
DB7
Bit de données 7
15
LED_A
Anode de rétroéclairage
16
LED_K
Cathode de rétroéclairage
Fonctionnalité, structure et manipulation d'un module de puissance
Pour les lecteurs débutant dans la gestion de l'énergie, l'« Abc des modules de puissance » contient les principes de base nécessaires à la sélection et à l'utilisation d'un module de puissance. Le livre décrit les relations et paramètres techniques liés aux modules de puissance et la base des techniques de calcul et de mesure.
Contenu
Les bases
Ce chapitre décrit la nécessité d'un convertisseur de tension DC/DC et ses fonctionnalités de base. De plus, diverses possibilités de réalisation d'un régulateur de tension sont présentées et les avantages essentiels d'un module de puissance sont mentionnés.
Topologies de circuits
Les concepts de circuits, les topologies Buck et Boost très fréquemment utilisées avec les modules de puissance sont expliqués en détail et d'autres topologies de circuits sont introduites.
Technologie, technologie de construction et de régulation
La construction mécanique d'un module de puissance est présentée, qui a une influence significative sur la CEM et les performances thermiques. De plus, les méthodes de contrôle sont expliquées et des conseils de conception de circuit sont fournis dans ce chapitre.
Méthodes de mesure
Des résultats de mesure significatifs sont absolument nécessaires pour évaluer un module de puissance. Les points de mesure et méthodes de mesure pertinents sont décrits dans ce chapitre.
Manutention
Les aspects de stockage et de manipulation des modules de puissance sont expliqués, ainsi que leurs procédés de fabrication et de soudure.
Sélection d'un module de puissance
Les paramètres et critères importants pour la sélection optimale d'un module de puissance sont présentés dans cette section.
Le module Caméra Raspberry Pi 3 est un appareil photo compact de Raspberry Pi. Il est doté d'un capteur IMX708 de 12 mégapixels avec HDR et d'un autofocus à détection de phase. Le Camera Module 3 est disponible en version standard et en version grand angle, toutes deux avec ou sans filtre infrarouge. Le Camera Module 3 peut être utilisé pour prendre des vidéos full HD ainsi que des photos, et dispose d'un mode HDR jusqu'à 3 mégapixels. Son fonctionnement est entièrement pris en charge par la bibliothèque libcamera, y compris la fonction d'autofocus rapide de Camera Module 3 : cela le rend facile à utiliser pour les débutants, tout en offrant beaucoup pour les utilisateurs avancés. Camera Module 3 est compatible avec tous les ordinateurs Raspberry Pi. Toutes les variantes du module caméra Raspberry Pi 3 possèdent : Capteur d'image CMOS 12 mégapixels rétro-éclairé et empilé (Sony IMX708) Rapport signal/bruit (SNR) élevé Correction dynamique des pixels défectueux (DPC) intégrée en 2D Autofocus à détection de phase (PDAF) pour un autofocus rapide Fonction de re-mosaïque QBC Mode HDR (jusqu'à 3 mégapixels en sortie) Sortie de données série CSI-2 Communication série 2 fils (supporte le mode rapide I²C et le mode rapide plus) Contrôle série 2 fils du mécanisme de mise au point Caractéristiques Capteur Sony IMX708 Résolution 11,9 MP Taille du capteur Diagonale du capteur 7,4 mm Taille de pixel 1,4 x 1,4 µm Horizontal/vertical 4608 x 2592 pixels Modes vidéo communs 1080p50, 720p100, 480p120 Sortie RAW10 Filtre anti-IR Intégré dans les variantes standard ; non présent dans les variantes NoIR Système autofocus Autofocus avec détection de phase Longueur du câble ruban 200 mm Connecteur de câble 15 x 1 mm FPC Dimensions 25 x 24 x 11,5 mm (hauteur 12,4 mm) Variantes du module caméra Raspberry Pi 3 Module Caméra 3 Module Caméra 3 NoIR Module Caméra 3 Wide Module Caméra 3 Wide NoIR Plage de mise au point 10 cm - ∞ 10 cm - ∞ 5 cm - ∞ 5 cm - ∞ Longueur focale 4,74 mm 4,74 mm 2,75 mm 2,75 mm Champ de vision diagonal 75 degrés 75 degrés 120 degrés 120 degrés Champ de vision horizontal 66 degrés 66 degrés 102 degrés 102 degrés Champ de vision vertical 41 degrés 41 degrés 67 degrés 67 degrés Rapport focal (F-stop) F1.8 F1.8 F2.2 F2.2 Sensible aux infrarouges Non Oui Non Oui Téléchargements GitHub Documentation
Affichage de texte déroulant avec huit écrans matriciels LED 8 x 8 (512 LED au total).
Construit autour d'un module Wi-Fi ESP-12F (basé sur ESP8266), programmé dans l'IDE Arduino. Le serveur Web ESP8266 permet de contrôler le texte affiché, le délai de défilement et la luminosité avec un téléphone mobile ou un autre appareil (portable) connecté au Wi-Fi.
Caractéristiques
Interface série 10 MHz
Contrôle individuel des segments LED
Sélection des chiffres avec décodage/sans décodage
Arrêt à faible consommation de 150 µA (données conservées)
Contrôle de la luminosité numérique et analogique
Affichage masqué à la mise sous tension
Affichage LED à cathode commune du lecteur
Pilotes de segment limités à taux de rotation pour des EMI inférieurs (MAX7221)
Interface série SPI, QSPI, MICROFIL (MAX7221)
Boîtiers DIP et SO à 24 broches
Remarque : Le circuit imprimé nu pour l'affichage des messages défilants (160491-1) est vendu séparément.
NRF24L01 est une puce émetteur-récepteur monolithique universelle en bande ISM fonctionnant dans la bande 2,4-2,5 GHz. Caractéristiques
Émetteur-récepteur sans fil comprenant : Générateur de fréquence, type amélioré, SchockBurstTM, contrôleur de mode, amplificateur de puissance, amplificateur à cristal, modulateur, démodulateur
La sélection du canal de puissance de sortie et les paramètres du protocole peuvent être définis avec une consommation de courant extrêmement faible, via l'interface SPI.
En mode de transmission, la puissance de transmission est de 6 dBm, le courant est de 9,0 mA, le courant du mode accepté est de 12,3 mA, la consommation de courant du mode mise hors tension et du mode veille est inférieure
Antenne 2,4 GHz intégrée, prend en charge jusqu'à six canaux de réception de données
Taille : 15 x 29 mm (antenne comprise)