Résultats de la recherche pour "picee OR development OR system"
-
Luckfox LuckFox Pico Ultra Linux Micro Development Board
Le LuckFox Pico Ultra est un ordinateur monocarte compact (SBC) équipé du chipset Rockchip RV1106G3, conçu pour le traitement de l'IA, le multimédia et les applications embarquées basse consommation. Il est équipé d'un processeur NPU 1 TOPS intégré, ce qui le rend idéal pour les charges de travail d'IA de pointe. Avec 256 Mo de RAM, 8 Go de stockage eMMC intégré, le Wi-Fi intégré et la prise en charge du module PoE LuckFox, la carte offre performances et polyvalence pour une large gamme d'utilisations. Sous Linux, la LuckFox Pico Ultra prend en charge diverses interfaces, notamment MIPI CSI, RGB LCD, GPIO, UART, SPI, I²C et USB, offrant ainsi une plateforme de développement simple et efficace pour les applications de domotique, de contrôle industriel et d'IoT. Spécifications Puce Rockchip RV1106G3 Processeur Cortex-A7 1,2 GHz Processeur de réseau neuronal (NPU) 1 TOPS, compatible int4, int8, int16 Processeur d'image (ISP) Entrée max. 5 Mo à 30fps Mémoire 256 Mo DDR3L Wi-Fi + Bluetooth WiFi-6 2,4 GHz Bluetooth 5.2/BLE Interface caméra MIPI CSI 2 voies Interface DPI RGB666 Interface PoE IEEE 802.3af PoE Interface haut-parleur MX1,25 mm USB Hôte/Périphérique USB 2.0 GPIO 30 GPIO Broches Ethernet Contrôleur Ethernet 10/100M et PHY intégré Support de stockage par défaut eMMC (8 Go) Inclus 1x LuckFox Pico Ultra W 1x Module PoE LuckFox 1x Antenne IPX 2,4G 2 dB 1x Câble USB-A vers USB-C 1x Sachet de vis Téléchargements Wiki
€ 39,95€ 19,95
Membres identique
-
Velleman Carte de développement Velleman ATmega328 Uno
La carte de développement ATmega328 Uno (compatible Arduino Uno) est une carte microcontrôleur basée sur l'ATmega328. Il dispose de 14 broches d'entrée/sortie numériques (dont 6 peuvent être utilisées comme sorties PWM), de 6 entrées analogiques, d'un résonateur céramique de 16 MHz, d'une connexion USB, d'une prise d'alimentation, d'un connecteur ICSP et d'un bouton de réinitialisation. Il contient tout le nécessaire pour prendre en charge le microcontrôleur ; connectez-le à un ordinateur avec un câble USB ou alimentez-le avec un adaptateur AC-DC ou une batterie pour commencer. Spécifications Microcontrôleur ATmega328 Tension de fonctionnement 5 V CC Tension d'entrée (recommandée) 7-12 V CC Tension d'entrée (limites) 6-20 V CC Broches d'E/S numériques 14 (dont 6 fournissent une sortie PWM) Broches d'entrée analogique 6 SRAM 2 Ko (ATmega328) EEPROM 1 Ko (ATmega328) Mémoire Flash 32 Ko (ATmega328) dont 0,5 Ko utilisé par le bootloader Vitesse de l'horloge 16 MHz Téléchargements Manual
€ 22,95
Membres € 20,66
-
NXP Semiconductors Carte de développement NXP FRDM-MCXN947
The FRDM-MCXN947 is a compact and versatile development board designed for rapid prototyping with MCX N94 and N54 microcontrollers. It features industry-standard headers for easy access to the MCU's I/Os, integrated open-standard serial interfaces, external flash memory, and an onboard MCU-Link debugger. Spécifications Microcontroller MCX-N947 Dual Arm Cortex-M33 cores @ 150 MHz each with optimized performance efficiency, up to 2 MB dual-bank flash with optional full ECC RAM, External flash Accelerators: Neural Processing Unit, PowerQuad, Smart DMA, etc. Memory Expansion *DNP Micro SD card socket Connectivity Ethernet Phy and connector HS USB-C connectors SPI/I²C/UART connector (PMOD/mikroBUS, DNP) WiFi connector (PMOD/mikroBUS, DNP) CAN-FD transceiver Debug On-board MCU-Link debugger with CMSIS-DAP JTAG/SWD connector Sensor P3T1755 I³C/I²C Temp Sensor, Touch Pad Expansion Options Arduino Header (with FRDM expansion rows) FRDM Header FlexIO/LCD Header SmartDMA/Camera Header Pmod *DNP mikroBUS User Interface RGB user LED, plus Reset, ISP, Wakeup buttons Inclus 1x FRDM-MCXN947 Development Board 1x USB-C Cable 1x Quick Start Guide Téléchargements Datasheet Block diagram
€ 29,95
Membres € 26,96
-
Elektor Publishing H0W2: Get Started with the MAX78000FTHR Development Board
Build your own AI microcontroller applications from scratch The MAX78000FTHR from Maxim Integrated is a small development board based on the MAX78000 MCU. The main usage of this board is in artificial intelligence applications (AI) which generally require large amounts of processing power and memory. It marries an Arm Cortex-M4 processor with a floating-point unit (FPU), convolutional neural network (CNN) accelerator, and RISC-V core into a single device. It is designed for ultra-low power consumption, making it ideal for many portable AI-based applications. This book is project-based and aims to teach the basic features of the MAX78000FTHR. It demonstrates how it can be used in various classical and AI-based projects. Each project is described in detail and complete program listings are provided. Readers should be able to use the projects as they are, or modify them to suit their applications. This book covers the following features of the MAX78000FTHR microcontroller development board: Onboard LEDs and buttons External LEDs and buttons Using analog-to-digital converters I²C projects SPI projects UART projects External interrupts and timer interrupts Using the onboard microphone Using the onboard camera Convolutional Neural Network
€ 39,95
Membres € 35,96
-
Elektor Bundles Get Started with the NXP FRDM-MCXN947 Development Board (offre groupée)
Cette offre groupée contient : Livre : Get Started with the NXP FRDM-MCXN947 Development Board (prix normal : 40 €) NXP FRDM-MCXN947 Development Board (prix normal : 30 €) Livre : Get Started with the NXP FRDM-MCXN947 Development Board Développer des projets sur la connectivité, le graphisme, l'apprentissage automatique, le contrôle moteur et les capteurs Ce livre (en anglais) traite de l'utilisation de la carte de développement FRDM-MCXN947, développée par NXP Semiconductors. Elle intègre le double processeur Arm Cortex-M33, fonctionnant à une fréquence allant jusqu'à 150 MHz. Idéale pour les applications industrielles, IoT et d'apprentissage automatique, elle dispose d'un port USB à haute vitesse, de CAN 2.0, de l'I³C et d'Ethernet 10/100. La carte comprend un débogueur MCU-Link intégré, un FlexI/O pour le contrôle des écrans LCD, et une mémoire flash à double banque pour les opérations de lecture-écriture simultanées, prenant en charge des configurations de mémoire externe de grande capacité. L'une des caractéristiques importantes de la carte de développement est l'intégration de l'unité de traitement neuronal (NPU) eIQ Neutron, permettant aux utilisateurs de développer des projets basés sur l'intelligence artificielle. La carte de développement prend également en charge les broches de connecteur au format Arduino Uno, la rendant compatible avec de nombreux shields Arduino, ainsi qu'un connecteur mikroBUS pour les cartes Click de MikroElektronika et un connecteur Pmod. L'un des avantages intéressants de la carte de développement FRDM-MCXN947 est qu'elle inclut plusieurs sondes de débogage intégrées, permettant aux programmeurs de déboguer leurs programmes en communiquant directement avec le microcontrôleur (MCU). Grâce au débogueur, les programmeurs peuvent exécuter un programme pas à pas, insérer des points d'arrêt, visualiser et modifier des variables, etc. De nombreux projets fonctionnels et testés ont été développés dans le livre en utilisant l'IDE populaire MCUXpresso et le SDK avec divers capteurs et actionneurs. L'utilisation de la bibliothèque CMSIS-DSP populaire est également expliquée avec plusieurs opérations matricielles couramment utilisées. Les projets fournis dans le livre peuvent être utilisés sans modification dans de nombreuses applications. Alternativement, les lecteurs peuvent s'inspirer de ces projets pour développer leurs propres projets. Carte de développement NXP FRDM-MCXN947 La FRDM-MCXN947 est une carte de développement compacte et polyvalente conçue pour le prototypage rapide avec les microcontrôleurs MCX N94 et N54. Elle dispose de connecteurs standard pour un accès facile aux E/S du MCU, d'interfaces série ouvertes intégrées, d'une mémoire flash externe et d'un débogueur MCU-Link embarqué. Spécifications Microcontrôleur Cœurs MCX-N947 Dual Arm Cortex-M33 à 150 MHz chacun avec une efficacité de performance optimisée, jusqu'à 2 Mo de mémoire flash double banque avec RAM2 ECC complète en option, flash externe Accélérateurs : unité de traitement neuronal, PowerQuad, Smart2 DMA, etc. Extension de mémoire *Prise pour carte microSD DNP Connectivité Phy Ethernet et connecteur Connecteurs HS USB-C Connecteur SPI/I²C/UART (PMOD/mikroBUS, DNP) Connecteur WiFi (PMOD/mikroBUS, DNP) Émetteur-récepteur CAN-FD Débogage Débogueur MCU-Link intégré avec CMSIS-DAP Connecteur JTAG/SWD Capteur Capteur de température P3T1755 I³C/I²C, pavé tactile Options d'extension En-tête Arduino (avec lignes d'extension FRDM) En-tête FRDM En-tête FlexIO/LCD En-tête SmartDMA/Caméra Pmod *DNP microBUS Interface utilisateur DEL utilisateur RVB, plus boutons de réinitialisation, de FAI et de réveil Inclus 1x Carte de développement FRDM-MCXN947 1x Câble USB-C 1x Quick Start Guide Downloads Datasheet Block diagram
€ 69,95€ 29,95
Membres identique
-
Farnell element14 Carte de développement OKdo E1
L'OKdo E1 est une carte de développement à très faible coût basée sur le microcontrôleur Arm Cortex-M33 double cœur NXP LPC55S69JBD100. La carte E1 est parfaite pour l'IoT industriel, le contrôle et l'automatisation des bâtiments, l'électronique grand public et les applications générales intégrées et sécurisées. Caractéristiques Processeur avec Arm TrustZone, unité à virgule flottante (FPU) et unité de protection de la mémoire (MPU) Coprocesseur CASPER Crypto pour permettre l'accélération matérielle de certains algorithmes cryptographiques asymétriques Accélérateur matériel PowerQuad pour les fonctions DSP à virgule fixe et flottante Fonction physique non clonable (PUF) SRAM pour la génération, le stockage et la reconstruction de clés Module PRINCE pour le cryptage et le décryptage en temps réel des données flash Moteurs AES-256 et SHA2 Jusqu'à neuf interfaces Flexcomm. Chaque interface Flexcomm peut être sélectionnée par logiciel pour être une interface USART, SPI, I²C et I²S Contrôleur hôte/périphérique USB 2.0 haute vitesse avec PHY sur puce Contrôleur hôte/périphérique USB 2.0 pleine vitesse avec PHY sur puce Jusqu'à 64 GPIO Interface de carte d'entrée/sortie numérique sécurisée (SD/MMC et SDIO) Caractéristiques Microcontrôleur flash LPC55S69JBD100 640 Ko Débogueur CMSIS-DAP v1.0.7 intégré basé sur LPC11U35 La PLL interne prend en charge un fonctionnement jusqu'à 100 MHz, 16 MHz peuvent être montés pour un fonctionnement complet à 150 MHz. SRAM 320 Ko Cristal 32 kHz pour horloge en temps réel 4 commutateurs utilisateur LED 3 couleurs Connecteur USB utilisateur Connecteurs d'extension 2 voies 16 voies UART sur port COM virtuel USB
€ 24,95
Membres € 22,46
-
Waveshare Carte de développement QuecPython EC200U-EU C4-P01
The EC200U-EU C4-P01 development board features the EC200U-EU LTE Cat 1 wireless communication module, offering a maximum data rate of up to 10 Mbps for downlink and 5 Mbps for uplink. It supports multi-mode and multi-band communication, making it a cost-effective solution. The board is designed in a compact and unified form factor, compatible with the Quectel multi-mode LTE Standard EC20-CE. It includes an onboard USB-C port, allowing for easy development with just a USB-C cable. Additionally, the board is equipped with a 40-pin GPIO header that is compatible with most Raspberry Pi HATs. Caractéristiques Equipped with EC200U-EU LTE Cat 1 wireless communication module, multi-mode & multi-band support Onboard 40-Pin GPIO header, compatible with most Raspberry Pi HATs 5 LEDs for indicating module operating status Supports TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS protocols, etc. Supports GNSS positioning (GPS, GLONASS, BDS, Galileo, QZSS) Onboard Nano SIM card slot and eSIM card slot, dual card single standby Onboard MIPI connector for connecting MIPI screen and is fully compatible with Raspberry Pi peripherals Onboard camera connector, supports customized SPI cameras with a maximum of 300,000 pixels Provides tools such as QPYcom, Thonny IDE plugin, and VSCode plugin, etc. for easy learning and development Comes with online development resources and manual (example in QuecPython) Spécifications Applicable Regions Europe, Middle East, Africa, Australia, New Zealand, Brazil LTE-FDD B1, B3, B5, B7, B8, B20, B28 LTE-TDD B38, B40, B41 GSM / GPRS / EDGE GSM: B2, B3, B5, B8 GNSS GPS, GLONASS, BDS, Galileo, QZSS Bluetooth Bluetooth 4.2 (BR/EDR) Wi-Fi Scan 2.4 GHz 11b (Rx) CAT 1 LTE-FDD: DL 10 Mbps; UL 5 Mbps LTE-TDD: DL 8.96 Mbps; UL 3.1 Mbps GSM / GPRS / EDGE GSM: DL 85.6 Kbps; UL 85.6 Kbps USB-C Port Supports AT commands testing, GNSS positioning, firmware upgrading, etc. Communication Protocol TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS SIM Card Nano SIM and eSIM, dual card single standby Indicator P01: Module Pin 1, default as EC200A-XX PWM0 P05: Module Pin 5, NET_MODE indicator SCK1: SIM1 detection indicator, lights up when SIM1 card is inserted SCK2: SIM2 detection indicator, lights up when SIM2 card is inserted PWR: Power indicator Buttons PWK: Power ON/OFF RST: Reset BOOT: Forcing into firmware burning mode USB ON/OFF: USB power consumption detection switch Antenna Connectors LTE main antenna + DIV / WiFi (scanning only) / Bluetooth antenna + GNSS antenna Operating Temperature −30~+75°C Storage Temperature −45~+90°C Téléchargements Wiki Quectel Resources
€ 69,95€ 34,95
Membres identique
-
Heltec Automation CubeCell HTCC-AB02S LoRa Development Board with GPS (EU868)
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications. Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels. The HTCC-AB02S is a developer-friendly board with an integrated AIR530Z GPS module, ideal for quickly testing and validating communication solutions. Features Arduino compatible Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262 LoRaWAN 1.0.2 support Ultra low power design, 21 uA in deep sleep Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching) Good impendence matching and long communication distance Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information Using Air530 GPS module with GPS/Beidou Dual-mode position system support Specifications Main Chip ASR6502 (48 MHz ARM Cortex-M0+ MCU) LoRa Chipset SX1262 Frequency 863~870 MHz Max. TX Power 22 ±1 dBm Max. Receiving Sensitivity −135 dBm Hardware Resource 2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO Memory 128 Kb FLASH16 Kb SRAM Power consumption Deep sleep 21 uA Interfaces 1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header) Battery 3.7 V lithium battery (power supply and charging) Solar Energy VS pin can be connected to 5.5~7 V solar panel USB to Serial Chip CP2102 Display 0.96" OLED (128 x 64) Operating temperature −20~70°C Dimensions 55.9 x 27.9 x 9.5 mm Included 1x CubeCell HTCC-AB02S Development Board 1x Antenna 1x 2x SH1.25 battery connector Downloads Datasheet Schematic GPS module (Manual) Quick start GitHub
€ 49,95€ 34,95
Membres identique
-
01Space Carte de développement 01Space RP2040-0.42LCD
Carte de développement compacte compatible Arduino, MicroPython et CircuitPython alimentée par Raspberry Pi RP2040 RP2040-0.42LCD est une carte de développement hautes performances avec écran LCD intégré de 0,42' (résolution 70x40) avec interfaces numériques flexibles. Il intègre la puce du microcontrôleur RP2040 du Raspberry Pi. Le RP2040 est doté d'un processeur Arm Cortex-M0+ double cœur cadencé à 133 MHz avec 264 Ko de SRAM interne et 2 Mo de stockage flash. Caractéristiques SoC Microcontrôleur Raspberry Pi RP2040 double cœur Cortex-M0+ jusqu'à 125 MHz, avec 264 Ko de SRAM Stockage Flash SPI de 2 Mo Afficher OLED de 0,42 pouce USB 1x port USB Type-C pour l'alimentation et la programmation Expansion – Connecteur Qwiic I²C – Embases à 7 et 8 broches avec jusqu'à 11x GPIO, 2x SPI, 2x I²C, 4x ADC, 1x UART, 5 V, 3,3 V, VBAT, GND Divers – Boutons de réinitialisation et de démarrage – LED RVB, LED d'alimentation Source de courant – 5 V via port USB-C ou Vin - Broche VBAT pour l'entrée de la batterie – Régulateur 3,3 V avec sortie crête 500 mA Dimensions 23,5x18mm Poids 2,5g Téléchargements GitHub
€ 19,95
Membres € 17,96
-
Ohmic Carte de développement PÚCA DSP ESP32
PÚCA DSP est une carte de développement ESP32 open source et compatible Arduino pour les applications audio et de traitement du signal numérique (DSP) avec des fonctionnalités de traitement audio étendues. Il fournit des entrées audio, des sorties audio, un réseau de microphones à faible bruit, une option de haut-parleur de test intégrée, une mémoire supplémentaire, une gestion de la charge de la batterie et une protection ESD, le tout sur un petit PCB compatible avec une maquette. Synthétiseurs, installations, interface utilisateur vocale et plus encore PÚCA DSP peut être utilisé pour une large gamme d'applications DSP, y compris, mais sans s'y limiter, celles dans les domaines de la musique, de l'art, de la technologie créative et de la technologie adaptative. Les exemples liés à la musique incluent la synthèse musicale numérique, l'enregistrement mobile, les haut-parleurs Bluetooth, les microphones directionnels sans fil au niveau de la ligne et la conception d'instruments de musique intelligents. Les exemples liés à l'art incluent les réseaux de capteurs acoustiques, les installations d'art sonore et les applications de radio Internet. Les exemples liés à la technologie créative et adaptative incluent la conception d'interfaces utilisateur vocales (VUI) et l'audio Web pour l'Internet des sons. Conception compacte et intégrée PÚCA DSP a été conçu pour la portabilité. Lorsqu'il est utilisé avec une batterie rechargeable externe de 3,7 V, il peut être déployé presque n'importe où ou intégré à presque n'importe quel appareil, instrument ou installation. Sa conception est le résultat de mois d'expérimentation avec diverses cartes de développement ESP32, cartes de dérivation DAC, cartes de dérivation ADC, cartes de dérivation microphone et cartes de dérivation de connecteur audio, et – malgré sa petite taille – il parvient à fournir toutes ces fonctionnalités en un seul. conseil. Et cela sans compromettre la qualité du signal. Caractéristiques Processeur et mémoire Processeur Espressif ESP32 Pico D4 Double cœur 32 bits 80 MHz / 160 MHz / 240 MHz 4 Mo SPI Flash avec 8 Mo de PSRAM supplémentaire (édition originale) Wi-Fi sans fil 2,4 GHz 802.11b/g/n BluetoothBLE 4.2 Antenne 3D l'audio Codec audio stéréo Wolfson WM8978 Entrée ligne audio sur connecteur stéréo 3,5 mm Audio Casque / Sortie Ligne sur connecteur stéréo 3,5 mm Entrée ligne auxiliaire stéréo, sortie audio mono acheminée vers l'en-tête GPIO 2x micros MEMS Knowles SPM0687LR5H-1 Protection ESD sur toutes les entrées et sorties audio Prise en charge des fréquences d'échantillonnage de 8, 11,025, 12, 16, 22,05, 24, 32, 44,1 et 48 kHz Pilote de haut-parleur 1 W, acheminé vers l'en-tête GPIO DAC SNR 98 dB, THD -84 dB (pondération « A » à 48 kHz) ADC SNR 95 dB, THD -84 dB (pondération « A » à 48 kHz) Impédance d'entrée ligne : 1 MOhm Impédance de sortie ligne : 33 Ohms Facteur de forme et connectivité Compatible avec la planche à pain 70x24mm 11x broches GPIO réparties sur un en-tête au pas de 2,54 mm, avec accès aux deux canaux ESP32 ADC, JTAG et broches tactiles capacitives USB 2.0 sur connecteur USB Type C Pouvoir Batterie rechargeable au lithium polymère 3,7/4,2 V, USB ou source d'alimentation externe 5 V CC L'ESP32 et le codec audio peuvent être placés en modes faible consommation sous contrôle logiciel Détection du niveau de tension de la batterie Protection ESD sur le bus de données USB Téléchargements GitHub Fiche de données Gauche Campagne de fourniture de masse (comprend une FAQ) Présentation du matériel Programmation du tableau Le codec audio
€ 69,95€ 49,95
Membres identique
-
Waveshare Carte de développement Waveshare RP2040-PiZero
Waveshare RP2040-PiZero est une carte microcontrôleur haute performance et économique avec interface DVI intégrée, emplacement pour carte TF et port PIO-USB, compatible avec l'en-tête GPIO 40 broches Raspberry Pi, facile à développer et à intégrer dans les produits. Caractéristiques Puce de microcontrôleur RP2040 conçue par Raspberry Pi Processeur ARM Cortex M0+ double cœur, horloge flexible fonctionnant jusqu'à 133 MHz 264 Ko de SRAM et 16 Mo de mémoire Flash intégrée L'interface DVI intégrée peut piloter la plupart des écrans HDMI (compatibilité DVI requise) Prend en charge l'utilisation en tant qu'hôte ou esclave USB via le port PIO-USB intégré Emplacement pour carte TF intégré pour lire et écrire une carte TF Connecteur de recharge/décharge de batterie au lithium intégré, adapté aux scénarios mobiles USB 1.1 avec prise en charge des appareils et des hôtes Programmation par glisser-déposer utilisant le stockage de masse via USB Modes veille et veille à faible consommation 2x SPI, 2x I²C, 2x UART, 4x ADC 12 bits, 16x canaux PWM contrôlables Horloge et minuterie précises sur puce Capteur de température Bibliothèques à virgule flottante accélérées sur puce Téléchargements Wikia
€ 17,95€ 8,95
Membres identique
-
Seeed Studio Seeed Studio CANBed – Kit de développement CAN-BUS Arduino
Le kit de développement CAN-BUS Arduino CANBed de Seeed Studio intègre un microcontrôleur ATmega32U4, éliminant ainsi le besoin d'une carte Arduino externe. Il combine un contrôleur de bus CAN MCP2515 et un émetteur-récepteur de bus CAN MCP2551 sur une seule carte, offrant une solution de communication CAN compacte et fiable. Caractéristiques ATmega32U4 avec le bootloader Arduino Leonardo Contrôleur de bus CAN MCP2515 et émetteur-récepteur de bus CAN MCP2551 Brochage standard OBD-II et CAN sélectionnable au niveau du connecteur sub-D Compatible avec l'IDE Arduino Paramètre Valeur Microcontrôleur ATmega32U4 (avec bootloader Arduino Leonardo) Vitesse d'horloge 16 MHz Mémoire flash 32 Ko SRAM 2,5 Ko EEPROM 1 KB Tension de fonctionnement (CAN-USB) 9 V - 28 V Tension de fonctionnement (MicroUSB) 5 V Interface d'entrée sub-D Inclus CANBed PCBA Connecteur Sub-D Connecteur 4PIN 2 connecteurs 4PIN 2.0 1 connecteur 9x2 2,54 1 connecteur 3x2 2.54
€ 32,95€ 16,50
Membres identique