Caractéristiques
Prise : 1x prise d'alimentation micro USB + 1x port de sortie RJ45 Tension d'entrée : 36 ~ 57 V (tension PoE standard 48 V, 52 V)
Tension de sortie : 5 V CC.
Courant de sortie : 2A
Distance de transmission : 10 ~ 100 m
Protocole PoE : IEEE802.3af
Bande passante réseau : 10/100 Mbps
Poids : 40g
Dimension du produit : 82 x 28 x 23 mm
Longueur du câble : 205 mm
Température de fonctionnement : -50 °C à +75 °C
Le SparkFun Power Delivery Board utilise un contrôleur autonome pour négocier avec les adaptateurs d’alimentation et passer à une tension supérieure autre que 5V. Il utilise le même adaptateur d’alimentation pour différents projets plutôt que de compter sur plusieurs adaptateurs d’alimentation pour fournir une sortie différente; il peut fournir la carte dans le cadre du système de connexion Qwiic de SparkFun, de sorte que vous n’aurez pas à faire de soudure pour comprendre comment les choses sont orientées. Le SparkFun Power Delivery Board tire parti de la norme de distribution d’alimentation à l’aide d’un contrôleur autonome de STMicroelectronics, le STUSB4500. Le STUSB4500 est un contrôleur de distribution d’alimentation USB qui traite les appareils récepteur de données. Il met en œuvre un algorithme propriétaire pour négocier un contrat de distribution d’électricité avec une source (c.-à-d. une prise murale de distribution d’électricité ou un adaptateur d’alimentation) sans avoir besoin d’un microcontrôleur externe. Cependant, vous aurez besoin d’un microcontrôleur pour configurer la carte. Les profils PDO sont configurés dans une mémoire non volatile intégrée. Le contrôleur fait tout le poids de la négociation de puissance et fournit un moyen facile de configurer sur I2C. Pour configurer la carte, vous aurez besoin d’un bus I2C. Le système Qwiic facilite la connexion de la carte d’alimentation à un microcontrôleur. Selon votre application, vous pouvez également vous connecter au bus I2C via les trous SDA et SCL. Caractéristiques : Plage de tension d’entrée et de sortie de 5-20V Courant de sortie jusqu’à 5A Trois profils d’alimentation configurables Commande automatique de l’évier Type-C™ et USB PD Certifié USB Type-C™ rév. 1.2 et USB PD rév. 2.0 (TID n° 1000133) Surveillance intégrée de la tension VBUS Pilotes de porte de commutation VBUS intégrés (PMOS)'
The Power Delivery Board is essentially a sink controller board. It negotiates with the USB PD charger to obtain the desired voltage and current according to the specified configuration.
The USB-C PD Power Delivery Board can be used in various applications where USB-C is utilized to power a product or project. It features a user-friendly DIP switch that allows you to select the desired output voltage or current from your USB PD charger.
Additionally, it has an on-board DC-DC converter capable of generating either 5 V or 3.3 V, depending on the jumper setting. It can easily provide around 3.3 W of power.Note: More power can be drawn from the DC-DC converter if the USB PD voltage is lower (e.g., 9 V, 12 V) or if an external heatsink is used.
Voltage and current selection or monitoring is possible through the I²C interface available on the 4-pin header.
Spécifications
USB-C Input
Power delivery up to 65 W via DIP switch and 100 W via I²C command (I²C pullups are not on the board). Please note that the 3.25 A setting(via DIP Switch) may not work with many USB-C PD chargers. We have also observed this during testing.
An additional DC-DC Converter(TPS54302) is onboard to generate 3.3 V, 1 A/5 V, 0.65 A output so that you need fewer components on your application board.
4x Mounting holes for easy mounting
LED indication for USB-C input, USB PD output and DC-DC converter output
A 2-pin power terminal is provided for easy connection
A 4-pin 2.54 mm header connector is provided for the I²C connection
Both connectors will come unsoldered
Dimensions: 50 x 35 mm
This PiCAN3 board provides CAN-Bus capability for the Raspberry Pi 4. It uses the Microchip MCP2515 CAN controller with MCP2551 CAN transceiver. Connection are made via DB9 or 3-way screw terminal. This board includes a switch mode power suppler that powers the Raspberry Pi is well.
Easy to install SocketCAN driver. Programming can be done in C or Python.
Caractéristiques
CAN v2.0B at 1 Mb/s
High speed SPI Interface (10 MHz)
Standard and extended data and remote frames
CAN connection via standard 9-way sub-D connector or screw terminal
Compatible with OBDII cable
Solder bridge to set different configuration for DB9 connector
120Ω terminator ready
Serial LCD ready
LED indicator
Four fixing holes, comply with Pi Hat standard
SocketCAN driver, appears as can0 to application
Interrupt RX on GPIO25
5 V/3 A SMPS to power Raspberry Pi and accessories from DB9 or screw terminal
Reverse polarity protection
High efficiency switch mode design
6-24 V input range
Optional fixing screws – select at bottom of this webpage
RTC with battery backup (battery not included, requires CR1225 cell)
Téléchargements
User guide
Schematic
Driver installation
Writing your own program in Python
Python3 examples
Le Milk-V Duo 256M est une plateforme de développement embarquée ultra-compacte basée sur la puce SG2002. Il peut exécuter Linux et RTOS, fournissant ainsi une plate-forme fiable, peu coûteuse et hautes performances pour les professionnels, les ODM industriels, les passionnés d'AIoT, les bricoleurs et les créateurs.
Cette carte est une version améliorée de Duo avec une augmentation de mémoire à 256 Mo, destinée aux applications exigeant des capacités de mémoire plus importantes. Le SG2002 élève la puissance de calcul à 1,0 TOPS @ INT8. Il permet une commutation transparente entre les architectures RISC-V/ARM et prend en charge le fonctionnement simultané de deux systèmes. De plus, il comprend une gamme d'interfaces GPIO riches telles que SPI, UART, adaptées à un large éventail de développements matériels dans la surveillance intelligente de pointe, notamment des caméras TIP, des judas intelligents, des sonnettes visuelles, et bien plus encore.
SG2002 est une puce hautes performances à faible consommation conçue pour divers domaines de produits tels que les caméras IP de surveillance intelligente de pointe, les serrures de porte intelligentes, les sonnettes visuelles et l'intelligence domestique. Il intègre la compression et le décodage vidéo H.264, l'encodage de compression vidéo H.265 et les capacités du FAI. Il prend en charge plusieurs algorithmes d'amélioration et de correction d'image tels que la large plage dynamique HDR, la réduction du bruit 3D, le désembuage et la correction de la distorsion de l'objectif, offrant aux clients une qualité d'image vidéo de qualité professionnelle.
La puce intègre également un TPU auto-développé, offrant une puissance de calcul de 1,0 TOPS pour des opérations sur des nombres entiers de 8 bits. Le moteur de planification TPU spécialement conçu fournit efficacement un flux de données à large bande passante pour tous les cœurs de l'unité de traitement tensoriel. De plus, il offre aux utilisateurs un puissant compilateur de modèles d’apprentissage en profondeur et un kit de développement de SDK logiciels. Les principaux frameworks d'apprentissage profond tels que Caffe et Tensorflow peuvent être facilement portés sur sa plate-forme. En outre, il inclut le démarrage de sécurité, les mises à jour sécurisées et le cryptage, fournissant une série de solutions de sécurité allant du développement à la production de masse jusqu'aux applications de produits.
La puce intègre un sous-système MCU 8 bits, remplaçant le MCU externe typique pour atteindre les objectifs d'économie de coûts et d'efficacité énergétique.
Spécifications
SoC
SG2002
RISC-V CPU
C906 @ 1 Ghz + C906 @ 700 MHz
Arm CPU
1x Cortex-A53 @ 1 GHz
MCU
8051 @ 6 Ko SRAM
Mémoire
256 Mo de DRAM SIP
TPU
1.0 TOPS @ INT8
Stockage
1x Connecteur microSD ou 1x SD NAND intégré
USB
1x USB-C pour l'alimentation et les données, USB Pads disponibles
CSI
1x Connecteur FPC 16P (MIPI CSI 2 voies)
Prise en charge des capteurs
5 M @ 30 ips
Ethernet
Ethernet 100 Mbit/s avec PHY
Audio
Via des pads GPIO
GPIO
Jusqu'à 26x pads GPIO
Puissance
5 V/1 A
Support du système d'exploitation
Linux, RTOS
Dimensions
21 x 51 mm
Téléchargements
Documentation
GitHub
Caractéristiques
Prise CM4
Convient à toutes les variantes du Compute Module 4
La mise en réseau
Connecteur Gigabit Ethernet RJ45 M.2 M KEY, prend en charge les modules de communication ou SSD NVME
Connecteur
En-tête GPIO 40 broches Raspberry Pi
USB
2x USB 2.0 Type-A 2x USB 2.0 via connecteur FFC
Afficher
Port d'affichage MIPI DSI (connecteur FPC 1,0 mm à 15 broches)
Caméra
2x port caméra MIPI CSI-2 (connecteur FPC 1,0 mm 15 broches)
Vidéo
2x ports HDMI (dont un port via connecteur FFC), prend en charge la sortie 4K 30 ips
RTC
APRÈS
Stockage
Prise de carte MicroSD pour les variantes Compute Module 4 Lite (sans eMMC)
En-tête de ventilateur
Pas de contrôle du ventilateur, 5 V
Entrée de puissance
5 V
Dimensions
85x56mm
Inclus
1x CM4-IO-BASE-A
1x vis de montage SSD
Téléchargements
Wiki
This PiCAN 2 board provides CAN-Bus capability for the Raspberry Pi 2/3. It uses the Microchip MCP2515 CAN controller with MCP2551 CAN transceiver. Connection are made via DB9 or 3-way screw terminal. This board includes a switch mode power suppler that powers the Raspberry Pi is well.
Easy to install SocketCAN driver. Programming can be done in C or Python.
Not suitable for Raspberry Pi 4, please use PiCAN 3 instead.
Caractéristiques
CAN v2.0B at 1 Mb/s
High speed SPI Interface (10 MHz)
Standard and extended data and remote frames
CAN connection via standard 9-way sub-D connector or screw terminal
Compatible with OBDII cable
Solder bridge to set different configuration for DB9 connector
120Ω terminator ready
Serial LCD ready
LED indicator
Foot print for two mini push buttons
Four fixing holes, comply with Pi Hat standard
SocketCAN driver, appears as can0 to application
Interrupt RX on GPIO25
5 V/1 A SMPS to power Raspberry Pi and accessories from DB9 or screw terminal
Reverse polarity protection
High efficiency switch mode design
6-20 V input range
Optional fixing screws – select at bottom of this webpage
Téléchargements
User guide
Schematic Rev B
Writing your own program in Python
Python3 examples in Github
This PiCAN2 Duo board provides two independent CAN-Bus channels for the Raspberry Pi 4. It uses the Microchip MCP2515 CAN controller with MCP2551 CAN transceiver. Connections are made via 4-way screw terminal. This board has a 5 V/3 A SMPS that can power the Raspberry Pi is well via the screw terminal.p
Easy to install SocketCAN driver. Programming can be done in C or Python.
Caractéristiques
CAN v2.0B at 1 Mb/s
High speed SPI Interface (10 MHz)
Standard and extended data and remote frames
CAN connection screw terminal
120 Ω terminator ready
Serial LCD ready
LED indicator
Four fixing holes, comply with Pi Hat standard
SocketCAN driver, appears as can0 and can1 to application
Interrupt RX on GPIO25 and GPIO24
5 V/3 A SMPS to power Raspberry Pi and accessories from screw terminal
Reverse polarity protection
High efficiency switch mode design
7-24 V input range
Téléchargements
User guide
Schematic Rev D
Writing your own program in Python
Python3 examples in Github
Hands-on in more than 50 projects
STM32 Nucleo family of processors are manufactured by STMicroelectronics. These are low-cost ARM microcontroller development boards. This book is about developing projects using the popular STM32CubeIDE software with the Nucleo-L476RG development board. In the early Chapters of the book the architecture of the Nucleo family is briefly described.
The book covers many projects using most features of the Nucleo-L476RG development board where the full software listings for the STM32CubeIDE are given for each project together with extensive descriptions. The projects range from simple flashing LEDs to more complex projects using modules, devices, and libraries such as GPIO, ADC, DAC, I²C, SPI, LCD, DMA, analogue inputs, power management, X-CUBE-MEMS1 library, DEBUGGING, and others. In addition, several projects are given using the popular Nucleo Expansion Boards. These Expansion Boards plug on top of the Nucleo development boards and provide sensors, relays, accelerometers, gyroscopes, Wi-Fi, and many others. Using an expansion board together with the X-CUBE-MEMS1 library simplifies the task of project development considerably.
All the projects in the book have been tested and are working. The following sub-headings are given for each project: Project Title, Description, Aim, Block Diagram, Circuit Diagram, and Program Listing for the STM32CubeIDE.
In this book you will learn about
STM32 microcontroller architecture;
the Nucleo-L476RG development board in projects using the STM32CubeIDE integrated software development tool;
external and internal interrupts and DMA;
DEBUG, a program developed using the STM32CubeIDE;
the MCU in Sleep, Stop, and in Standby modes;
Nucleo Expansion Boards with the Nucleo development boards.
What you need
a PC with Internet connection and a USB port;
STM32CubeIDE software (available at STMicroelectronics website free of charge)
the project source files, available from the book’s webpage hosted by Elektor;
Nucleo-L476RG development board;
simple electronic devices such as LEDs, temperature sensor, I²C and SPI chips, and a few more;
Nucleo Expansion Boards (optional).
'À bord de chaque moto:bit se trouvent plusieurs broches d’E/S, ainsi qu’un connecteur Qwiic vertical, capable de brancher des servomoteur, des capteurs et d’autres circuits. En appuyant sur le bouton, vous pouvez faire bouger votre micro:bit ! Le moto:bit se connecte au micro:bit via un SMD mis à jour, connecteur de bord en haut de la carte, ce qui facilite la configuration. Cela crée un moyen pratique d’échanger micro:bits pour la programmation tout en fournissant des connexions fiables à toutes les différentes broches sur le micro:bit. Nous avons également inclus un connecteur d’alimentation coaxial de base sur la moto:bit qui est capable de fournir de l’énergie à tout ce que vous connectez à la carte de support. Caractéristiques : Connecteur Edge plus fiable pour une utilisation facile avec le micro:bit Full H-Bridge pour la commande de deux moteurs Commande des servomoteurs Connecteur Qwiic vertical Port I2C pour étendre les fonctionnalités Gestion de l’alimentation et de la batterie à bord pour le micro:bit'
La carte FPGA iCEBreaker est une carte de développement FPGA éducative open source.
L'iCEBreaker est idéal pour les cours et les ateliers enseignant l'utilisation du flux de conception FPGA open source via Yosys , nextpnr , IceStorm , Icarus Verilog , Amaranth HDL et autres. Cela signifie que le tableau est peu coûteux et dispose d’un ensemble de fonctionnalités intéressantes pour permettre la conception de cours et d’exercices d’atelier intéressants. En même temps, cela permet à l'utilisateur d'utiliser les outils propriétaires du fournisseur s'il le souhaite.
Après l'atelier, les cartes peuvent être facilement utilisées comme carte de développement car la plupart des GPIO sont exposés, décomposés et configurables via des cavaliers à l'arrière de la carte. Il n'y a qu'un nombre minimal de boutons et de LED qui ne peuvent pas être déconnectés et utilisés à vos propres fins.
Documentation
Atelier