Contrairement à la plupart des kits, le Grove Beginner Kit for Arduino est un kit tout-en-un, vous n'aurez pas besoin de platine d'essai, ni de soudure, ni même de fils de connexions. Le kit est alimenté par une carte compatible Arduino (Seeeduino Lotus) ainsi que par 10 capteurs Grove Arduino supplémentaires, le tout sur une seule partie de la carte.
Tous les modules ont été connectés au microcontrôleur Seeeduino à travers les trous du circuit imprimé, de sorte qu'aucun câble Grove n'est nécessaire pour réaliser les connexions. Cette solution est parfaite pour les domaines éducatifs où les câblages et les soudures frustrantes ne sont plus nécessaires.
Bien sûr, vous pouvez également retirer les modules et utiliser des câbles Grove pour les connecter. Vous pouvez réaliser n'importe quel projet Arduino avec ce kit Grove pour Arduino.
Il est possible d'utiliser les modules Grove peuvent pour des projets de recherche et de développement.
Inclus dans le kit :
1 x Kit Grove pour débutant pour la carte Arduino
1 x Câble Micro USB
6 x Câbles Grove
Inclus sur la platforme:
1 x LED Grove
1 x Buzzer Grove
1 x Écran OLED 0,96pouce Grove
1 x Bouton Grove
1 x Potentiomètre rotatif Grove
1 x Lumière Grove
1 x Son Grove
1 x Capteur de température et d'humidité Grove
1 x Capteur de pression d'air Grove
1 x Accélérateur 3 axes Grove
1 x Seeeduino Lotus
Ce programmeur a été spécialement conçu pour graver des bootloaders (sans ordinateur) sur les cartes de développement ATmega328P/ATmega328PB compatibles Arduino.
Branchez simplement le programmeur sur l'interface ICSP pour graver à nouveau le chargeur de démarrage. Il est également compatible avec les nouvelles puces, à condition que le circuit intégré soit fonctionnel.
Remarque : graver un chargeur de démarrage efface toutes les données précédentes de la puce.
Caractéristiques
Tension de fonctionnement : 3,1-5,3 V
Courant de fonctionnement : 10 mA
Compatible avec les cartes basées sur Arduino Uno R3 (ATmega328P ou ATmega328PB)
Dimensions : 39,6 x 15,5 x 7,8 mm
Ce module comprend une antenne de traçage intégrée et adapte l’IC à une empreinte approuvée par la FCC, et comprend des mécanismes de découplage et de synchronisation qui devraient être conçus dans un circuit à l’aide de l’IC nu nRF52840. L’émetteur-récepteur Bluetooth inclus sur le nRF52840 dispose d’une pile BT 5.1. Il prend en charge les protocoles sans fil Bluetooth 5, Bluetooth mesh, IEEE 802.15.4 (Zigbee & Thread) et 2.4Ghz RF (y compris le protocole RF propriétaire de Nordic) vous permettant de choisir l’option qui fonctionne le mieux pour votre application. Caractéristiques : ARM Cortex-M4 CPU avec unité à virgule flottante (FPU) Flash interne de 1 Mo -- Pour tous vos besoins de programme, SoftDevice et de stockage de fichiers ! 256kB de RAM (Mémoire Vive) interne -- Pour la gestion de la mémoire. Radio 2,4 GHz intégrée, prenant en charge : Bluetooth Low Energy (BLE) -- Avec prise en charge des périphériques et/ou des périphériques BLE centraux Bluetooth 5 -- Mesh Bluetooth! ANT -- Si vous voulez transformer l’appareil en moniteur de fréquence cardiaque ou d’exercice. Protocole RF propriétaire de Nordic -- Si vous souhaitez communiquer en toute sécurité avec d’autres appareils nordiques. Tous les périphériques d’E/S dont vous pourriez avoir besoin. USB -- Transformez votre nRF52840 en un périphérique de stockage de masse USB, utilisez une interface CDC (série USB) et plus encore. UART -- Interfaces série avec prise en charge du contrôle de flux matériel si désiré. I2C -- Interface de bus bidirectionnel à 2 fils préférée de tout le monde SPI -- Si vous préférez l’interface série 3+fils Convertisseurs analogique-numérique (ADC) -- Huit broches sur les entrées analogiques de support de mini-circuit nRF52840 PWM -- Le support de minuterie sur n’importe quelle broche signifie le support de PWM pour les DEL d’entraînement ou les servomoteurs. Horloge en temps réel (RTC) -- Gardez une trace étroite des secondes et des millisecondes, prend également en charge les fonctions de sommeil profond chronométré. Trois UARTs Primaire lié à l’interface USB. Deux UARTs matériels. Deux autobus I2C Deux autobus SPI Bus SPI secondaire principalement utilisé pour Flash IC. Traitement audio PDM Deux entrées analogiques Deux broches d’E/S numériques dédiées Deux broches PWM dédiées Onze épinglettes d’E/S à usage général »
La reconnaissance vocale, les commandes vocales, les gestes ou la reconnaissance d’image sont possibles avec les applications TensorFlow. Le Cloud est incroyablement robuste, mais la connexion continue nécessite de l’énergie et une connectivité qui ne sont peut-être pas disponibles. Edge Computing gère des tâches distinctes telles que déterminer si quelqu’un a dit 'oui' et répond en conséquence. L’analyse audio se fait sur la combinaison MicroMod plutôt que sur le web. Cela réduit considérablement les coûts et la complexité tout en limitant les fuites potentielles de renseignements personnels. Cette carte comprend deux microphones MEMS (un avec interface PDM, un avec interface I2S), un accéléromètre 3 axes ST LIS2DH12, un connecteur pour interface à une caméra (vendu séparément) et un connecteur Qwiic. Un connecteur USB-C moderne facilite la programmation et nous avons rendu disponible le connecteur JTAG pour les utilisateurs plus avancés qui préfèrent utiliser la puissance et la vitesse des outils professionnels. Nous avons même ajouté un cavalier pratique pour mesurer la consommation de courant pour les tests de faible puissance. Caractéristiques : M.2 MicroMod Keyed-E H4.2mm 65 pins SMD Connector 0.5mm Microphone numérique I2C MEMS PDM Invensense ICS-43434 (COMP) Microphone numérique PDM MEMS PDM Knowles SPH0641LM4H-1 (IC) Batterie au lithium ML414H-IV01E pour RTC Accéléromètre ST LIS2DH12TR (3 axes, ultra faible puissance) Connecteur FPC 24 broches 0,5 mm (connecteur caméra Himax) USB - C Connecteur Qwiic Prise MicroSD Phillips #0 M2.5x3mm vis incluse
Le téléchargement intégral de ce numéro est disponible pour nos membres GOLD et GREEN sur le site Elektor Magazine !
Pas encore membre ? Cliquez ici.
tableau de bord OBD2Des cadrans anciens aux données en temps réel
OBD2 : ajoutez un compte-tours et un indicateur de changement de vitesse à votre voitureRétro, mais extrêmement utile
capteurs de vision et LiDAR pour la robotique
Sensor+Test 2025 et PCIM 2025
mesures sans contact du champ électrique (1)Membrane vibrante pour mesurer des tensions continues ou des champs électriques statiques
détecteur de courrier sans filCapteurs optiques, radars… quelques options à explorer
Elektor Mini-WheelieUn robot auto-équilibré
cellules solairesDrôles de composants, la série
premiers pas avec un capteur radar moderneUn capteur précis qui ne passe pas inaperçu
sur le vifUsine de papier
CybersécuritéDes temps difficiles pour les hackers
Infographie : IdO et capteurs
le Bluetooth 6.0 pour des applications de télémétrie amélioréesCette nouvelle version offre des fonctions de localisation améliorées
découvrez la communication sans fil avec BeagleY-AI
Projet 2.0Corrections, mises à jour et courrier des lecteurs
démarrer en électronique……Conclusion sur les ampli-op
un puissant assistant de codage de l'IAAccélérez votre développement avec Continue et Visual Studio Code
contrôleur de charge solaire avec MPPT (2)Le circuit
détecteur d'obstacles à ultrasonsUn projet simple pour aider les malvoyants
une odyssée de l'IABilan du premier semestre
synthétiseur MIDI autonome Raspberry Pi (3)plus intelligent avec une interface utilisateur
Meshtastic : un projet de démoUn réseau intelligent de noeuds LoRa
générateur analogique de fréquences audioGénérateur de signaux sinusoïdaux de haute qualité à fréquence réglable
Le téléchargement intégral de ce numéro est disponible pour nos membres GOLD et GREEN sur le site Elektor Magazine !
Pas encore membre ? Cliquez ici.
petite caméra thermiqueréalisée avec un Arduino UNO
mise à jour du projet #3 : compteur d'énergie basé sur l'ESP32intégration et test avec Home Assistant
2024 : l'odyssée de l'IAaméliorer la détection d'objets : intégration de techniques avancées
Raspberry Pi se met à l'IAun nouveau kit comprenant un accélérateur IA matériel et un adaptateur M.2 HAT+
capteurs de stations météorologiqueslequel choisir ?
Relevé des compteurs d'eau basé sur l'IA (1)intégrez votre ancien compteur dans l'IdO !
une alarme GSMun module GSM protège votre garage à distance
optimisation et contrôle des appareils Thread à faible consommation d'énergiefaible consommation... peu d’effort ?
sur le vifmontrez-moi là où ça fait mâle
chambre à brouillard à faire soi-mêmevisualiser les rayonnements invisibles
SparkFun Thing Plus Mattercarte de développement IdO polyvalente basée sur Matter
Rétroéquipement IoTAdaptation des machines à interface RS232 à l'industrie 4.0
ajouter l’IoT grâce aux microcontrôleurs 8 bits
la technologie au service du développement durableles avancées technologiques favorisent une utilisation plus efficace de l’énergie dans de nombreuses applications
AWS pour Arduino et Cie. (1)utiliser AWS IoT ExpressLink en pratique
détecteur de flux d'air Arduinoaucun capteur externe n'est nécessaire !
détecteur de fuite d'eauconnecté à l’Arduino Cloud
le quartzdrôle de composant, la série
enregistreur universel de données de jardinageun pas vers l’Intelligence Artificielle au Jardin.
un générateur analogique 1 kHzondes sinusoïdales à faible distorsion
Miletus : utiliser les applications Web hors ligneaccès aux fonctions de l’appareil et du système
de la 4G à la 5Gest-ce une étape si facile à franchir ?
démarrer en électronique…connexions symétriques
Le chargeur intégré est disponible pour nos clients OR et VERT sur le site d'Elektor Magazine !
Pas encore membre ? Cliquez ici .
Comment fonctionne le projet : conception de la base énergétique pour l'ESP32 Prochaines étapes du prototypage
optimisation des centrales solaires sur le balcon Considérations, faits et calculs
ESP32 avec OpenDTU pour les centrales électriques sur le balcon Relever les données des petits onduleurs avec des microcontrôleurs
alimentation linéaire variable Ensemble Alimentation 0-50 V / 0-2 A + alim symétrique double
le stockage d'énergie aujourd'hui et dans le futur interview Simon Engelke
2024 : l'Odyssée de l'IA sans répétition
Bluetooth LE sur le STM32 Plus que suffisant pour mesurer la distance
boîte de conservation centre intelligent sur l'être humain
MAUI : programmation pour PC, tablettes et smartphones le nouveau framework en théorie et en pratique
ChatMagLev lévitation magnétique ? versionIA
Régulateur de pulsation simple PV Réalisation du système de gestion de l'énergie photovoltaïque de base
les composants à cathode froide
sur le vif nostalgie
démarrer en électronique ?Leçon FET
tutoriel bus CAN pour l'Arduino UNO R4 deux UNO R4 connectés au bus
infographie
assistance complète en conception et développement les services d'ingénierie d'Arrow
comparativement parlant, la force et l'efficacité de l'énergie
condensateurs électrolytiques et aluminium sources potentielles de distorsions et technologie audio
tester et mesurer l'USB le Fnirsi FNB58
l'outil Pick-and-Place manuel Pixel Pump simplifier l'assemblage du manuel des cartes CMS
visite à domicile Naguère, dans un pays lointain ?
« Dans le monde de l'éthique et de l'électronique, les petites choses sont faites avec un impact significatif. »
éthique et électronique les orientations de l'OCDE et le soin apporté aux diligences impliquées dans la chaîne d'agrément
Chadèche : chargeur/déchargeur intelligent pour accumulation NiMh résumé du projet de lecture
projet 2.0 Corrections, mises à jour et courriers des lecteurs
LoRaWAN est bénéfique, mais il est parfois inutile, difficile ou coûteux de mettre en œuvre un réseau LoRaWAN, en particulier lorsqu'on envisage une intégration dans le cloud. Par exemple, la surveillance de l'humidité du sol dans votre jardin ou le suivi des conditions dans la serre de votre ferme peuvent ne pas nécessiter une configuration LoRaWAN complète.
Ce récepteur LoRa est conçu pour fonctionner avec les modules Makerfabs SenseLora. Il reçoit les signaux LoRa et les transmet à un ordinateur, permettant aux données d'être affichées, enregistrées et analysées sur l'ordinateur.
Téléchargements
Manual
Software
Que se passe-t-il donc avec les étiquettes sérigraphiées? Elles sont vraiment partout. Nous avons décidé d'étiqueter les pins comme exactement comme ils sont assignées sur le CI Apollo3. Cela rend la recherche de la broche avec la fonction que vous désirez beaucoup plus facile. Jetez un œil à la carte complète de la broche de la feuille de données Apollo3. Si vous avez vraiment besoin de tester la fonctionnalité SPI 4 bits de l'Artemis, vous devrez accéder aux pins 4, 22, 23 et 26. Avez-vous besoin d'essayer le port différentiel ADC 1 ? Broches 14 et 15. Le RedBoard Artemis ATP vous permettra de d'exploiter les impressionnantes capacités du module Artemis.Le RedBoard Artemis ATP a le conditionneur d'énergie amélioré et l'USB en série que nous avons affiné au fil des années sur notre gamme de produits RedBoard. Un connecteur USB-C moderne facilite la programmation. Un connecteur Qwiic facilite I²C. L'ATP est entièrement compatible avec le Core Arduino de SparkFun et peut être programmé facilement sous l'IDE Arduino. Nous avons exposé le connecteur JTAG pour les utilisateurs plus expérimentés qui préfèrent utiliser la puissance et la vitesse des outils professionnels. Si vous avez attendez beaucoup d'un GPIO avec un programme simple, prêt à être lancé sur le marché, l'ATP est le correctif dont vous avez besoin. Nous avons ajouté un micro MEMS numérique pour les gens qui veulent expérimenter avec des commandes vocales qui sont toujours disponibles avec TensorFlow et l'apprentissage automatique. Nous avons même ajouté un cavalier pratique pour mesurer la consommation de courant pour les tests de faible puissance.Avec un flash de 1 Mo et 384 Ko de RAM, vous aurez amplement de place pour vos croquis. Le module Artemis fonctionne à 48MHz avec un mode turbo 96MHz disponible et avec Bluetooth pour démarrer !Caractéristiques :Empreinte méga Arduino1M Flash / RAM 384k48 MHz / 96 MHz turbo disponible6uA/MHz (fonctionne à moins de 5 mW à plein régime)48 GPIO - toutes les interruptions capables31 canaux PWMRadio BLE intégrée10 canaux ADC avec une précision de 14 bits avec jusqu'à 2,67 millions d'échantillons par seconde pour un taux d'échantillonnage continu et multi-lots efficaceADC différentiel 2 canaux2 UARTs6 bus I²C6 autobus SPIBus SPI 2/4/8 bitsInterface PDMInterface I²SInterface sécurisée de carte à puceConnecteur Qwiic
Grove - Time of Flight Distance Sensor-VL53L0X est un capteur haute vitesse, haute précision et longue distance basé sur VL53L0X .
Le VL53L0X est un module de télémétrie laser à temps de vol (ToF) de nouvelle génération et il est l'un des plus petits du marché aujourd'hui. Il fournit une mesure de distance précise, indépendante des réflexions de la cible, ce qui le rend supérieur aux autres technologies conventionnelles. Il peut mesurer des distances absolues jusqu'à 2 m, élevant ainsi la norme en matière de performances de distance et permettant plusieurs nouvelles applications. Le VL53L0X intègre un réseau SPAD (diodes à avalanche à photon unique) de pointe et est doté de la technologie brevetée Flight SenseTM de deuxième génération de ST.
L'émetteur VCSEL (Vertical-Cavity Surface-Emitting Laser) de 940 nm du VL53L0X, complètement invisible à l'œil humain, associé à des filtres infrarouges physiques internes, permet des distances plus longues, une plus grande immunité à la lumière ambiante et une meilleure robustesse pour couvrir la diaphonie optique du verre.
Caractéristiques
Pilote VCSEL
capteur de distance avec microcontrôleur intégré avancé
Compensation de diaphonie optique intégrée avancée pour simplifier la sélection du verre de protection
Sans danger pour les yeux : Appareil laser de classe 1 conforme à la dernière norme IEC 60825-1:2014 - 3ème édition
Une seule alimentation
Interface I²C pour le contrôle des appareils et le transfert de données
Xshutdown (réinitialisation) et interruption GPIO
Adresse I²C programmable
Tension de fonctionnement : 3,3 V/5 V.
Température de fonctionnement : 20 ℃ - 70 ℃
Distance de mesure recommandée : 30 mm - 1000 mm
Adresse I²C par défaut : 0x52
Inclus
1x Grove - Capteur de distance de temps de vol-VL53L0X
1x câble Grove
Le MotoPi est une carte d'extension permettant de contrôler et d'utiliser jusqu'à 16 servomoteurs 5 V contrôlés par PWM. La carte peut être alimentée en plus par une tension comprise entre 4,8 V et 6 V, ce qui garantit toujours une alimentation parfaite et permet d'alimenter même des projets plus importants.
Avec l'alimentation supplémentaire et le convertisseur analogique-numérique intégré, de nouvelles possibilités peuvent être atteintes. Une alimentation supplémentaire par moteur n'est plus nécessaire car toutes les connexions (Tension, Terre, Contrôle) sont directement connectées à la carte.
Le contrôle et la programmation peuvent se faire directement, comme d'habitude, sur le Raspberry Pi.
Fonctionnalités spéciales
16 canaux, propre générateur d'horloge, Incl. Convertisseur analogique-numérique
Entrée 1
Connecteur d'alimentation coaxial 5,5 / 2,1 mm, 5 V / 6 A max
Entrée 2
Bornier à vis, 4,8-6 V / 6 A max
Compatible avec
Framboise Pi A+, B+, 2B, 3B
Dimensions
65x56x24mm
Etendue de la livraison
Tableau, manuel, matériel de fixation
This 12.7 (5") touchscreen display stands out through its contrasty and sharp image. It offers a maximum resolution of 800 x 480 Pixels. A particular HDMI adapter is delivered with the display, with which this can be attached directly to the Raspberry and can be fixed to an unit with the aid of openings for the screws.
Features
Display: 5" (12.7 cm)
Weight: 159 g
Resolution: 800 x 480 pixels
Display Type: Touch-Control
Amount HDMI-HDMI Adapter: 1x
Micro USB Interface (only Power): 1x
Supports Raspberry: Raspbian, Ubuntu
Dimensions, without mounting: 120 x 79 x 7 mm
Scope of supply: 5 inch HDMI LCD, HDMI-HDMI Adapter, Touchpen
Le ZD-8951 est une station de soudage numérique contrôlée par température 3-en-1 avec extracteur de fumée intégré et éclairage LED. La fonction de chauffage rapide atteint une température de 400°C en moins d'une minute.
Spécifications (Fer à souder)
Puissance : 60 W (max. 130 W)
Plage de température : 160°C à 480°C (320°F à 896°F)
Élément chauffant PTC
Avec fonction de conversion °C/°F
La température peut être facilement réglée avec le bouton.
Écran LCD avec rétroéclairage changeant.
Avec fonction de chauffage rapide, elle atteint 400°C (752°F) en moins d'une minute à partir de la température ambiante.
Spécifications (Extracteur de fumée)
Puissance : 23 W
Débit d'air : 1 m³/min (max)
Spécifications (Éclairage LED)
Puissance : 5 W
Éclairage : 12 LED
Luminosité : 242 lm
Si vous cherchez un moyen simple d'apprendre la soudure, ou si vous souhaitez simplement fabriquer un petit gadget que vous pourrez transporter, cet ensemble est une excellente opportunité. Le jeu de réaction est un kit éducatif qui vous apprend à souder et, à la fin, vous obtenez votre propre petit jeu. Le but du jeu est d'appuyer sur le bouton à côté de la LED dès qu'elle s'allume. À chaque bonne réponse, le jeu devient un peu plus difficile – le temps dont vous disposez pour appuyer sur le bouton diminue. Combien de bonnes réponses pouvez-vous obtenir ?
Il est basé sur le microcontrôleur ATtiny404, programmé en Arduino. À l'arrière, vous trouverez une pile CR2032 qui rend le kit portable. Il y a aussi un porte-clés. Le processus de soudure est assez simple en fonction de la marque sur le PCB.
Inclus
1x carte de circuit imprimé
1x microcontrôleur ATtiny404
4x LED
4x boutons poussoirs
1x interrupteur
4x résistances (330 ohms)
1x support de pile CR2032
1x pile CR2032
1x porte-clés
Utilisez le bon outil pour le bon travail. Ces piquets en acier sont utilisés pour presser les rivets sur le circuit imprimé après le perçage des trous.
Ils ont été conçus pour une performance optimale sur l'encre et assurent une connexion électrique entre les couches supérieures et inférieures de votre PCB.
Apprenez à les utiliser ici.
If you enjoy DIY electronics, projects, software and robots, you’ll find this book intellectually stimulating and immediately useful. With the right parts and a little guidance, you can build robot systems that suit your needs more than overpriced commercial systems can.
20 years ago, robots based on simple 8-bit processors and touch sensors were the norm. Now, it’s possible to build multi-core robots that can react to their surroundings with intelligence. Today’s robots combine sensor readings from accelerometers, gyroscopes and computer vision sensors to learn about their environments. They can respond using sophisticated control algorithms and they can process data both locally and in the cloud.
This book, which covers the theory and best practices associated with advanced robot technologies, was written to help roboticists, whether amateur hobbyist or professional, take their designs to the next level. As will be seen, building advanced applications does not require extremely costly robot technology. All that is needed is simply the knowledge of which technologies are out there and how best to use each of them.
Each chapter in this book will introduce one of these different technologies and discuss how best to use it in a robotics application. On the hardware side, we’ll cover microcontrollers, servos, and sensors, hopefully inspiring you to design your own awe-inspiring, next-generation systems. On the software side, we’ll cover programming languages, debugging, algorithms, and state machines. We’ll focus on the Arduino, the Parallax Propeller, Revolution Education PICAXE and projects I’ve with which I’ve been involved, including the TBot educational robot, the PropScope oscilloscope, the 12Blocks visual programming language, and the ViewPort development environment. In addition, we’ll serve up a comprehensive introduction to a variety of essential topics, including output (e.g. LEDs, servo motors), and communication technologies (e.g. infrared, audio), that you can use to develop systems that interact to stimuli and communicate with humans and other robots. To make these topics as accessible as possible, handy schematics, sample code and practical tips regarding building and debugging have been included.
Hanno Sander
Christchurch, New Zealand
It is becoming important for microcontroller users to quickly learn and adapt to new technologies and architecture used in high performance 32-bit microcontrollers. Many manufacturers now offer 32-bit microcontrollers as general purpose processors in embedded applications.
ARM provide 32 and 64-bit processors mainly for embedded applications. These days, the majority of mobile devices including mobile phones, tablets, and GPS receivers are based on ARM technology. The low cost, low power consumption, and high performance of ARM processors makes them ideal for use in complex communication and mixed signal applications.
This book makes use of the ARM Cortex-M family of processors in easy-to-follow, practical projects. It gives a detailed introduction to the architecture of the Cortex-M family. Examples of popular hardware and software development kits are described.
The architecture of the highly popular ARM Cortex-M processor STM32F107VCT6 is described at a high level, taking into consideration its clock mechanisms, general input/output ports, interrupt sources, ADC and DAC converters, timer facilities, and more. The information provided here should act as a basis for most readers to start using and programming the STM32F107VCT6 microcontroller together with a development kit.
Furthermore, the use of the mikroC Pro for ARM integrated development environment (IDE) has been described in detail. This IDE includes everything required to create a project; namely an editor, compiler, simulator, debugger, and device programmer.
Although the book is based on the STM32F107VCT6 microcontroller, readers should not find it difficult to follow the projects using other ARM processor family members.
Le téléchargement intégral de ce numéro est disponible pour nos membres GOLD et GREEN sur le site Elektor Magazine !Pas encore membre ? Cliquez ici.Super Servo TesterTestez jusqu'à quatre servos, isolés ou in situsignaux analogiques et microcontrôleursCA/N, CN/A, mesure du courant, et plusEmbedded World 2023l'échantillonnage sub-Nyquist en pratiquecapture fiable des hautes fréquences à l'aide du sous-échantillonnageconnecter un smartphone Android à un ESP32 ?projet pratique avec l'API wifi d'Androidfiltre actif 1 kHz pour mesures de distorsionmesures améliorées par l'optimisation du signal de mesuredémarrer en électronique... multivibrationsProjet 2.0corrections, mises à jour et messages de lecteursle nouveau protocole I3Ceffet d'annonce ou vrai progrèsBlueRC : télécommande IR avec smartphone et ESP32adaptative et universellela documentation des microcontrôleurs sans peine (2)registres et schémas de principeautomatisation des tests et des mesuresprogrammation de l'équipement d'essai pour qu'il fasse ce que vous voulezInfographie : test et mesureimmunité contre les surtensionsprotection pour modules de puissance CC/CC non isolésappareil de mesure Wihatesteurs et compteurs d'installation sur lesquels vous pouvez compterautomatisation des tests et partage des résultatssur le vifl'électronique des blocsenregistreur de données énergétiquesmesurer et enregistrer la consommation d'énergieassemblage du kit Rover M.A.R.S. de 4tronixdisque de stationnement avec affichage e-papierune version informatisée innovanteeCO₂ Telegram botmesureur de la qualité de l'air avec notification par Telegramles coulisses de l'audio haut de gamme maisonTon Giesberts d'Elektor interviewé sur l'art de la conception analogiquevisite à domicilenouvelle ciblelecture d'étiquettes RFID et serrure de porte RFIDexemples de projets tirés du guide d'expérimentation pour Arduino d'ElektorSondes de courant RF pour oscilloscopeLa mesure de courants RF sans peinepas pour les mauviettes - kit bras robotiqueavec Raspberry Pi Pico et MicroPythonIA générativeMais qui a fait ça ?Hexadoku
307 schémas d'électronique analogique, logique ou numérique, tous signés Elektor. Voici une mine d'idées, de trouvailles et d'astuces.
Beaucoup sont présentés sous une forme assez élaborée, avec plan détaillé, dessin du circuit imprimé, liste des compositions complètes et circuit imprimé... ces célèbres dessins sont à la base d'une grande partie de la réputation de l'Électricien. Tous les domaines de prédilection de l'électronique sont abordés : audio, vidéo, auto, moto, vélo, maison, loisirs, HF, mesure, test, alimentation et micro-informatique.
Depuis le processus de production de la série, les 307 circuits sont une véritable ligne directrice pour l'électronique moderne, source des idées originales qui guident le processus de travail sur les variantes. Recevez les articles qui intéressent le nombre de doubles publiés dans la revue d'Elektor, publiés par la tradition du présent et publiés, et le nombre d'appels de Hors-Gabarit, conformes aux exceptions en vigueur.
Voici les domaines familiaux et les usages de l'électronique :
alimentations, régulateurs et chargeurs
audio Video
communication
hautes fréquences
informatique
jeux & modélisme
maison et automobile
mesurer et tester
processeur et contrôleur
L'écran tactile CrowVision de 11,6 pouces est conçu pour les machines tout-en-un. Il dispose d'un écran haute résolution de 1366 x 768 et d'une dalle IPS, offrant une expérience visuelle supérieure. La structure métallique fixée à l'arrière de style industriel est compatible avec divers ordinateurs monocarte (SBC), avec une disposition raisonnable et un câblage soigné, ce qui la rend facile à mettre sous tension et à utiliser avec des opérations simples.
L'écran utilise une communication compatible HDMI et prend en charge le multi-touch capacitif. Il dispose d'interfaces et de boutons réservés pour les haut-parleurs et autres accessoires, ce qui le rend adaptable à différents scénarios d'utilisation. Il peut être utilisé avec une variété d'ordinateurs monocarte couramment disponibles tels que Raspberry Pi, Jetson Nano, et est plug-and-play, tout en étant entièrement compatible avec les systèmes d'exploitation des ordinateurs monocarte (tels que Raspbian, Ubuntu). , Windows, Android, Mac OS et Chrome OS, etc.).
Cet écran peut être largement utilisé dans les affichages du système de contrôle des applications d'automatisation, les projets de bricolage personnels, les écrans secondaires/secondes fenêtres, les équipements d'affichage audio-vidéo d'ordinateur monocarte, les appareils de communication HDMI, les écrans d'extension de console de jeu et d'autres scénarios.
Caractéristiques
Écran haute résolution de 11,6 pouces avec une résolution de 1 366 x 768, un panneau IPS et un grand angle de vision de 178° pour une meilleure expérience visuelle
Structure de fixation arrière unique avec piliers de fixation coulissants, compatible avec la plupart des modèles d'ordinateurs monocarte, facile à assembler
Large compatibilité, compatible avec plusieurs systèmes d'exploitation (Raspbian, Ubuntu, Windows, Android, Mac OS et Chrome OS)
Prend en charge l'audio, la vidéo et le toucher capacitif, plug and play
Intègre une variété d'interfaces périphériques (telles que des haut-parleurs, des écouteurs, des claviers, des écrans tactiles) et des touches de réglage OSD intégrées
La carte mère est équipée d'une fonction de conversion de puissance de sortie 5 V/3 A, il n'est pas nécessaire de connecter séparément une alimentation externe pour l'ordinateur monocarte.
Spécifications
Taille de l'écran : 11,6 pouces
Type de contact : Tactile capacitif à 5 points
Résolution : 1366 x 768
Profondeur de couleur : 16 M
Angle de vision : grand angle de vision de 178°
Type d'affichage : panneau IPS
Type d'écran : TFT-LCD
Alimentation externe : 12 V/2 A
Entrée numérique: interface compatible HDMI
Interfaces : 1x interface clavier, 1x alimentation sortie 5 V, 1x interface Mini HD, 1x interface tactile, 1x interface haut-parleur, 1x prise casque, 1x alimentation 12 V entrée
Système de compatibilité : Raspbian, Ubuntu, Windows, Android, Mac OS et Chrome OS, etc.
Zone active : 256,13 x 144 mm
Dimensions : 290,8 x 184,2 mm
Inclus
1 écran tactile capacitif de 11,6 pouces
1x câble USB-A vers USB-C
1x câble USB-A vers micro B
1x câble HD vers mini HD
1x câble Micro HD vers mini HD
1x carte de contrôle OSD
1x adaptateur secteur
1x Tournevis
2x Ruban
1x manuel
Téléchargements
Manuel
Wiki
Ce module de gestion d'alimentation solaire est conçu pour une panneau solaire de 6~24 V. Il peut charger une batterie Li rechargeable de 3.7 V via le panneau solaire ou une connexion USB, et fournit une sortie régulée de 5 V/1 A ou 3.3 V/1 A. Le module est doté de la fonction MPPT (Maximum Power Point Tracking) et de circuits de protection multiples, ce qui lui permet de fonctionner avec une efficacité élevée, une stabilité et une sécurité. Il convient aux projets alimentés par l'énergie solaire, aux objets connectés (IoT) à faible consommation d'énergie et à d'autres projets de protection de l'environnement. Caractéristiques Prend en charge la fonction MPPT (Maximum Power Point Tracking), maximisant l'efficacité du panneau solaire Prend en charge la charge de la batterie via le panneau solaire ou USB Pour panneau solaire de 6~24 V, entrée jack DC-002 ou borne à vis Bouton de réglage MPPT sur la carte, pour améliorer l'efficacité de charge Deux interfaces de sortie d'alimentation sur la carte : port USB pour une sortie de 5 V, connecteur à broches pour une sortie de 3.3 V ou 5 V Condensateur électrolytique en aluminium de grande capacité et condensateur céramique SMD sur la carte, pour réduire les ondulations et assurer une performance stable Support de batterie 14500 et connecteur de batterie PH2.0, pour connecter différents types de batteries Li rechargeables de 3.7 V Plusieurs indicateurs LED pour surveiller l'état du panneau solaire et de la batterie Circuits de protection multiples : surcharge / décharge excessive / protection contre les inversions / surchauffe / surintensité, pour une utilisation stable et sûre Spécifications Entrée solaire 6~24 V (6 V par défaut) Recharge USB Batterie Batterie Li-ion 3.7 V 850mAh 14500 (non incluse) Entrée USB 5 V (Micro USB) Sortie 5 V 5 V/1 A (USB), 3.3 V/1 A (broches) Tension de coupure de recharge 4.2 V ±1% Tension de protection de décharge excessive 2.9 V ±1% Efficacité de recharge via panneau solaire ~78% Efficacité de recharge via USB ~82% Efficacité de sortie des batteries ~86% Courant de repos (max) Température de fonctionnement -40°C ~ 85°C Dimensions 65.2 x 56.2 x 22.9 mm Note : Batterie 14500 non incluse. Téléchargements Wiki
M5Stamp Fly est un quadricoptère open source programmable, doté du StampS3 comme contrôleur principal. Il intègre un gyroscope 6 axes BMI270 et un magnétomètre 3 axes BMM150 pour la détection d'attitude et de direction. Le capteur de pression barométrique BMP280 et deux capteurs de distance VL53L3 permettent un maintien précis de l'altitude et l'évitement des obstacles. Le capteur de débit optique PMW3901MB-TXQT permet la détection de déplacement.
Le kit comprend un buzzer, un bouton de réinitialisation et des LED RVB WS2812 pour l'interaction et l'indication d'état. Il est équipé d'une batterie haute tension de 300 mAh et de quatre moteurs sans noyau à grande vitesse. Le PCB comprend un INA3221AIRGVR pour la surveillance du courant/tension en temps réel et dispose de deux connecteurs Grove pour des capteurs et périphériques supplémentaires.
Préchargé avec un firmware de débogage, le Stamp Fly peut être contrôlé à l'aide d'un joystick Atom via le protocole ESP-NOW. Les utilisateurs peuvent choisir entre les modes automatique et manuel, permettant une mise en œuvre facile de fonctions telles que le survol et les retournements précis. Le code source du micrologiciel est open source, ce qui rend le produit adapté à l'éducation, à la recherche et à divers projets de développement de drones.
Applications
Éducation
Recherche
Développement de drones
Projets de bricolage
Caractéristiques
M5StampS3 comme contrôleur principal
BMP280 pour la détection de la pression barométrique
Capteurs de distance VL53L3 pour le maintien d'altitude et l'évitement d'obstacles
Capteur d'attitude à 6 axes
Magnétomètre à 3 axes pour la détection de direction
Détection de flux optique pour la détection de vol stationnaire et de déplacement
Sonnerie
Batterie haute tension de 300 mAh
Détection de courant et de tension
Extension du connecteur Grove
Spécifications
M5StampS3
ESP32-S3@Xtensa LX7, 8 Mo de Flash, WiFi, prise en charge OTG\CDC
Moteur
716-17600kv
Capteur de distance
VL53L3CXV0DH/1 (0x52) à 3 m maximum
Capteur de flux optique
PMW3901MB-TXQT
Capteur barométrique
BMP280 (0x76) à 300-1 100 hPa
Magnétomètre 3 axes
BMM150 (0x10)
Capteur IMU 6 axes
IMC270
Bosquet
I²C+UART
Batterie
Batterie au lithium haute tension 1S (300 mAh)
Détection de courant/tension
INA3221AIRGVR (0x40)
Sonnerie
Buzzer passif intégré @ 5020
Température de fonctionnement
0-40°C
Dimensions
81,5 x 81,5 x 31 mm
Poids
36,8 g
Inclus
1x Stamp Fly
1x Batterie au lithium haute tension de 300 mAh
Téléchargements
Documentation