For Speed, Area, Power, and Reliability
This book teaches the fundamentals of FPGA operation, covering basic CMOS transistor theory to designing digital FPGA chips using LUTs, flip-flops, and embedded memories. Ideal for electrical engineers aiming to design large digital chips using FPGA technology.
Discover:
The inner workings of FPGA architecture and functionality.
Hardware Description Languages (HDL) like Verilog and VHDL.
The EDA tool flow for converting HDL source into a functional FPGA chip design.
Insider tips for reliable, low power, and high performance FPGA designs.
Example designs include:
Computer-to-FPGA UART serial communication.
An open-source Sump3 logic analyzer implementation.
A fully functional graphics controller.
What you need:
Digilent BASYS3 or similar FPGA eval board with an AMD/Xilinx FPGA.
Vivado EDA tool suite (available for download from AMD website free of charge).
Project source files available from author’s GitHub site.
Le kit de test Super Servo Elektor permet le contrôle des servomoteurs et la mesure de leurs signaux. Il permet le test simultané de quatre servomoteurs.
Le testeur est fourni en kit. Tous les composants nécessaires à l'assemblage du dispositif sont fournis dans le kit. Une expérience basique de soudure électronique est nécessaire pour réaliser l'assemblage du kit. Le microcontrôleur est préprogrammé.
Le testeur Super Servo est doté de deux modes de fonctionnement: Control/Manual et Measure/Inputs :
Dans le mode Control/Manual, le Testeur Super Servo délivre à ses sorties , les signaux de contrôle pour quatre servomoteurs, ou pour un contrôleur de vol ou un contrôleur de vitesse ESC (Electronic Speed Controller) pour moteur sans balai (brushless). Les signaux sont contrôlés par quatre potentiomètres.
Dans le mode Measure/Inputs le Testeur Super Servo mesure les signaux des servomoteurs reliés à ses entrées. Ces signaux peuvent par exemple provenir d'un ESC, d'un contrôleur de vol, d'un récepteur ou de tout autre dispositif. Les signaux sont également dirigés vers ses sorties afin de contrôler les servomoteurs, l'ESC ou le contrôleur de vol. Les résultats sont visualisés sur l'écran.
Spécifications
Modes de fonctionnement
Control/Manual et Measure/Inputs (Contrôle manuel et mesures)
Nombre de canaux
3
Entrées des signaux des servomoteurs
4
Sorties des signaux vers les servomoteurs
4
Alarme
Buzzer & LED
Affichage
Écran OLED de 0,96' (128 x 32 pixels)
Tension d'entrée K5
7-12 V CC
Tension d'entrée K1
5-7,5 V CC
Courant d'entrée
30 mA (9 VDC sur K5, K1 et K2 non reliés)
Dimensions
113 x 66 x 25 mm
Poids
60 g
Inclus
Résistances (0,25 W)
R1, R3
1 kΩ, 5%
R2, R4, R5, R6, R7, R9, R10
10 kΩ, 5%
R8
22 Ω, 5%
P1, P2, P3, P4
10 kΩ, potentiomètre vertical linéaire/B
Condensateurs
C1
100 µF 16 V
C2
10 µF 25 V
C3, C4, C7
100 nF
C5, C6
22 pF
Semiconducteurs
D1
1N5817
D2
LM385Z-2.5
D3
BZX79-C5V1
IC1
7805
IC2
ATmega328P-PU, programmé
LED1
LED, 3 mm, rouge
T1
2N7000
Divers
BUZ1
Buzzer Piezo avec oscillateur
K1, K2
Connecteur à 2 rangées de 12 broches à 90°
K5
Connecteur jack
K4
Connecteur à 1 rangée de 4 broches
K3
Connecteur à 2 rangées de 6 broches
S1
Interrupteur à glissière 2P2T
S2
Interrupteur à glissière 1P2T
X1
Quartz, 16 MHz
Support DIP 28 broches pour IC2
Circuit imprimé Elektor
Afficheur OLED de 0,96', 128 x 32 pixels, interface I²C à 4 broches
Liens
Elektor Magazine
Elektor Labs
La configuration par défaut contient une mini plaque d'essais (breadboard) incluse, un adaptateur de carte SD, 2 cartes micro SD, 2 périphériques USB, une cale micro-USB et bien sûr le Raspberry Pi Zero lui-même.
Les utilisateurs peuvent décider d'utiliser l'emplacement de cale micro-USB pour contenir un adaptateur micro-HDMI, ou vous pouvez souhaiter conserver une carte de référence Portsplus ou similaire GPIO dans l'emplacement pour adaptateur SD. Vous pouvez choisir de stocker votre lecteur de carte micro-SD USB ou même d'autres périphériques USB plus gros comme l'USBDoctor. Utilisez-le de la manière qui vous convient le mieux.
Tous les ports Raspberry Pi Zero sont accessibles depuis le ZeroDock, y compris le port de la caméra et l'en-tête de broche de réinitialisation/composite. Les pHAT ne sont pas non plus obstrués, vous êtes donc libre de réaliser des prototypes avec vos cartes d'extension préférées.
Le boîtier est un mélange élégant de couches d'acrylique transparentes et noires, de fixations noires et d'une planche à pain transparente, s'adaptant bien à la plupart des PC/moniteurs de bureau.
Guide de montage disponible ici .
Le kit comprend
Boîtier en acrylique découpé au laser à 4 couches
Fixations boitier et Raspberry Pi
Mini-planche à pain
Learn programming for Alexa devices, extend it to smart home devices and control the Raspberry Pi
The book is split into two parts: the first part covers creating Alexa skills and the second part, designing Internet of Things and Smart Home devices using a Raspberry Pi.
The first chapters describe the process of Alexa communication, opening an Amazon account and creating a skill for free. The operation of an Alexa skill and terminology such as utterances, intents, slots, and conversations are explained. Debugging your code, saving user data between sessions, S3 data storage and Dynamo DB database are discussed.
In-skill purchasing, enabling users to buy items for your skill as well as certification and publication is outlined. Creating skills using AWS Lambda and ASK CLI is covered, along with the Visual Studio code editor and local debugging. Also covered is the process of designing skills for visual displays and interactive touch designs using Alexa Presentation Language.
The second half of the book starts by creating a Raspberry Pi IoT 'thing' to control a robot from your Alexa device. This covers security issues and methods of sending and receiving MQTT messages between an Alexa device and the Raspberry Pi.
Creating a smart home device is described including forming a security profile, linking with Amazon, and writing a Lambda function that gets triggered by an Alexa skill. Device discovery and on/off control is demonstrated.
Next, readers discover how to control a smart home Raspberry Pi display from an Alexa skill using Simple Queue Service (SQS) messaging to switch the display on and off or change the color.
A node-RED design is discussed from the basic user interface right up to configuring MQTT nodes. MQTT messages sent from a user are displayed on a Raspberry Pi.
A chapter discusses sending a proactive notification such as a weather alert from a Raspberry Pi to an Alexa device. The book concludes by explaining how to create Raspberry Pi as a stand-alone Alexa device.
Comprend :
2x connecteur mâle 2,54 mm 2x20
10x connecteur mâle 2,54 mm 1x20
4x connecteur mâle 2,54 mm 2x3
2x connecteur mâle 2,54 mm 1x20 à angle droit
2x connecteur mâle 2,54 mm 2x20 à angle droit
2x connecteur femelle 2,54 mm 2x20
4x femelle 2,54 mm 2x3
6x connecteur femelle 2,54 mm 1x10
6x connecteur femelle 2,54 mm 1x8
6x connecteur femelle 2,54 mm 1x6
Cavalier 6x 2,54 mm avec poignée
ILI9341 est un pilote SOC monopuce de 262 144 couleurs pour un écran à cristaux liquides TFT avec une résolution de 240 x 320 points (RVB), comprenant un pilote source de 720 canaux, un pilote de porte de 320 canaux, 172 800 octets de GRAM pour des données d'affichage graphique de 240 x 320. points (RVB) et circuit d'alimentation.
ILI9341 prend en charge l'interface MCU de bus de données parallèle 8-/9-/16-/18 bits, l'interface RVB de bus de données 6-/16-/18 bits et l'interface périphérique série 3-/4 lignes (SPI).
La zone d'image animée peut être spécifiée dans le GRAM interne par la fonction d'adresse de fenêtre. La zone de fenêtre spécifiée peut être mise à jour de manière sélective, de sorte que l'image animée puisse être affichée simultanément indépendamment de la zone d'image fixe.
L'ILI9341 peut fonctionner avec une tension d'interface 1,65 V ~ 3,3 VI/O et un circuit suiveur de tension intégré pour générer des niveaux de tension pour piloter un écran LCD. L'ILI9341 prend en charge le mode d'affichage couleur, 8 couleurs et le mode veille pour un contrôle précis de l'alimentation par logiciel. Ces fonctionnalités font de l'ILI9341 un pilote LCD idéal pour les produits portables de taille moyenne ou petite tels que les téléphones cellulaires numériques, les téléphones intelligents, les MP3 et les PMP pendant de longues périodes. la durée de vie de la batterie est une préoccupation majeure.
Caractéristiques
Résolution d'affichage : 240 x 320 (RVB)
Sortie : 720 sorties sources | 320 sorties de porte | Sortie d'électrode commune (VCOM)
Pilote LCD a-TFT avec affichage complet sur puce RAM : 172 800 octets
Interface système
Interface 8 bits, 9 bits, 16 bits, 18 bits avec MCU série 8080-Ⅰ/8080-Ⅱ
Interface RVB 6 bits, 16 bits, 18 bits avec contrôleur graphique
Interface série 3 lignes/4 lignes
Mode d'affichage:
Mode couleur (mode veille désactivé) : 262 000 couleurs
Mode couleur réduit (mode veille activé) : 8 couleurs
Modes d'économie d'énergie :
Mode veille
Mode veille profonde
Fonctions sur puce :
Générateur et réglage VCOM
Générateur de chronométrage
Oscillateur
Convertisseur DC/DC
Inversion ligne/trame
1 courbe Gamma prédéfinie avec correction Gamma RVB séparée
Contrôle adaptatif de la luminosité du contenu
MTP (3 fois) :
8 bits pour ID1, ID2, ID3
7 bits pour le réglage VCOM
Architecture à faible consommation d'énergie
Alimentations à faible fonctionnement :
VDDI = 1,65 V ~ 3,3 V (logique)
VCI = 2,5 V ~ 3,3 V (analogique)
Commande de tension LCD :
Tension d'alimentation source/VCOM
AVDD-GND = 4,5 V ~ 5,5 V
VCL-GND = -2,0 V ~ -3,0 V
Tension de sortie du pilote de grille
VGH-GND = 10,0 V ~ 20,0 V
VGL-GND = -5,0 V ~ -15,0 V
VGH-VGL 3 ≦ 2V
Tension de sortie du pilote VCOM
VCOMH = 3,0 V ~ (AVDD – 0,5) V
VCOML = (VCL+0,5)V ~ 0V
VCOMH-VCOML ≦ 6,0 V
Plage de température de fonctionnement : -40 ℃ à 85 ℃
Caractéristiques
Prend en charge la tension du moteur de 5 V à 30 V DC
Courant jusqu'à 13 A en continu et 30 A en crête
Entrée de niveau logique 3,3 V et 5 V
Compatible avec Arduino et Raspberry Pi
Fréquence PWM de contrôle de vitesse jusqu'à 20 kHz
Pont en H NMOS complet pour une meilleure efficacité Aucun dissipateur thermique n'est requis
Commande bidirectionnelle pour un moteur à courant continu à balais
Freinage récupératif
Pour plus d'informations, consultez le manuel d'utilisation
Pour la bibliothèque Arduino fournie par mon Cytron cliquez ici
Le Raspberry Pi Pico 2 W est une carte microcontrôleur basée sur le RP2350 doté d'un réseau local sans fil 802.11n à 2,4 GHz et de Bluetooth 5.2. Il vous offre encore plus de flexibilité dans la conception de vos produits IoT ou intelligents et étend les possibilités de vos projets.
Le RP2350 fournit une architecture de sécurité complète construite autour d'Arm TrustZone pour Cortex-M. Il intègre un démarrage signé, 8 Ko d'OTP antifusible pour le stockage des clés, une accélération SHA-256, un TRNG matériel et des détecteurs de problèmes rapides.
La capacité unique à double cœur et à double architecture du RP2350 permet aux utilisateurs de choisir entre une paire de cœurs Arm Cortex-M33 standard et une paire de cœurs Hazard3 RISC-V à matériel ouvert. Programmable en C/C++ et Python, et pris en charge par une documentation détaillée, le Raspberry Pi Pico 2 W est la carte microcontrôleur idéale pour les passionnés et les développeurs professionnels.
Spécifications
Processeur
Processeurs Dual Arm Cortex-M33 ou double RISC-V Hazard3 à 150 MHz
Sand fil
Infineon CYW43439 monobande 2,4 GHz sans fil 802.11n et Bluetooth 5.2
Mémoire
520 Ko de SRAM sur puce ; Flash QSPI intégré de 4 Mo
Interfaces
26 broches GPIO polyvalentes, dont 4 pouvant être utilisées pour AD
Périphériques
2x UART
2x Contrôleurs SPI
2x Contrôleurs I²C
24x Canaux PWM
1x Contrôleur USB 1.1 et PHY, avec prise en charge des hôtes et des périphériques
12x Machines à états PIO
Puissance d'entrée
1,8-5,5 V CC
Dimensions
21 x 51 mm
Téléchargements
Datasheet
Pinout
Schematic
An Introduction to RISC-V
RISC-V is an Instruction Set Architecture (ISA) that is both free and open. This means that the RISC-V ISA itself does not require a licensing fee, although individual implementations may do so. The RISC-V ISA is curated by a non-profit foundation with no commercial interest in products or services that use it, and it is possible for anyone to submit contributions to the RISC-V specifications. The RISC-V ISA is suitable for applications ranging from embedded microcontrollers to supercomputers.
This book will first describe the 32-bit RISC-V ISA, including both the base instruction set as well as the majority of the currently-defined extensions. The book will then describe, in detail, an open-source implementation of the ISA that is intended for embedded control applications. This implementation includes the base instruction set as well as a number of standard extensions.
After the description of the CPU design is complete the design is expanded to include memory and some simple I/O. The resulting microcontroller will then be implemented in an affordable FPGA development board (available from Elektor) along with a simple software application so that the reader can investigate the finished design.
L'OWON HDS160 est un multimètre True RMS à 4½ chiffres (60000 points), idéal pour les professionnels, les makers et les étudiants. Il intègre des sondes intelligentes et permet des mesures automatiques de formes d'ondes (Vmax, Vmin, Vp-p, Vavg, Vrms et fréquence). En plus, il fonctionne comme un un oscilloscope portatif complet (1 MHz).
Caractéristiques
Instrument de mesure multifonctionnel : multimètre à 4½ chiffres + oscilloscope
Mesures automatiques de forme d'onde : y compris Vmax, Vmin, Vp-p, Vavg, Vrms et fréquence.
Conception conviviale : touches clairement étiquetées pour une utilisation facile et une durée de vie accrue de l'appareil.
Détection de sonde intelligente : commute automatiquement les fonctions de mesure en fonction de l'insertion de la sonde, évitant ainsi efficacement les dommages causés à l'instrument par une mauvaise utilisation.
Gestion efficace de l'énergie : alimenté par des piles au lithium 18650, garantissant une durée de fonctionnement plus longue et une fiabilité améliorée pour les tâches de mesure prolongées.
Mesure haute tension sûre : conforme aux normes CAT Ⅲ 1000 V, permettant une mesure sûre et directe des formes d'onde haute tension jusqu'à 1000 V, élargissant les possibilités d'application.
Affichage haute définition : doté d'un écran IPS de 2,8 pouces avec un grand angle de vision, garantissant une lisibilité claire sous n'importe quelle perspective.
Affichage environnemental adaptatif : les modes d'affichage à double thème à haute luminosité et à contraste élevé offrent une visibilité optimale dans des conditions de forte et de faible luminosité, améliorant ainsi la convivialité globale.
Spécifications du multimètre
Plage de mesure
Précision
Tension continue (V)
60.000mV / 600.00mV / 6.0000V / 60.000V / 600.00V / 1000.0V
±(0.05%+5 dig)
Tension alternative (V)
60.000mV / 600.00mV / 6.0000V / 60.000V / 600.00V / 750.00V
±(0.1%+30dig)
Courant continu (A)
600.00uA / 6000.0uA / 60.000mA / 600.00mA / 6.0000A / 10.000A
±(0.15%+10dig)
Courant alternatif (A)
600.00uA / 6000.0uA / 60.000mA / 600.00mA / 6.0000A / 10.000A
±(0.5%+20dig)
Résistance (Ω)
600.00Ω / 6.0000kΩ / 60.000kΩ / 600.00KΩ / 6.0000MΩ / 60.000MΩ
±(0.15%+10dig)
Capacité (F)
6.000nF / 60.00nF / 600.0nF / 6.000μF / 60.00μF / 600.0μF / 6.000mF / 60.00mF
±(2.0%+20dig)
Fréquence (Hz)
60.00Hz / 600.00Hz / 6.0000kHz / 60.000kHz / 600.00kHz / 6.0000MHz / 60.000MHz
±(0.2%+10dig)
Cycle de service
0.1%~99.9% (valeur typique : Vrms=1V, f=100Hz)
±(1.2%+3dig)
0.1%~99.9% (≥1kHz)
±(2.5%+10dig)
Diode
3.0000V
±(1.0%+10dig)
On-Off
1000.0Ω
Écran
60000
Spécifications de l'oscilloscope
Bande passante analogique
1 MHz (échelle ACV uniquement)
Canal
1
Plage de base de temps
2,5 µs à 10 s/grille
Plage de sensibilité verticale de tension
30 mV à 500 V/grille
Précision d'amplitude verticale
±(5% + 0,2 div)
Limite de tension maximale
1000 V CC + CA de crête valeur
Mode de déclenchement
Auto/Normal/Single
Réglage automatique
Base de temps/Amplitude verticale/Valeur de déclenchement
Échantillon maximal
5,0 MSa/s
Impédance d'entrée
≈10 MΩ
Précision de la base de temps
±(0,01% + 0,1div)
Plage de sensibilité verticale actuelle
100 μA~5 A/grid
Fonction de mesure
Vmax, Vmin, Vp-p, Vavg, Vrms, Hz
Limite de courant maximale
15 A DC+AC Valeur de crête
Trigger edge
Rise edge/Fall edge
Spécifications générales
Écran
LCD 2,8" (320 x 240)
Indication de batterie faible
Oui
Rétroéclairage
Oui
Mode veille
Oui
Protection d'entrée
Oui
Mesure relative
Oui
Impédance d'entrée
≥10 MΩ
Batterie
18650 Lithium
Conformité de sécurité
CAT III 1000 V
Dimensions
93 x 41,5 x 188 mm
Poids
0,35 kg
Inclus
1x OWON HDS160 multimètre & oscilloscope
2x Câbles multimètre
1x Câble USB
1x Sac de rangement
1x Manuel
Téléchargements
Datasheet
Manual
A Fast-Lane Ride From Concept to Project
The core of the book explains the use of the Raspberry Pi Zero 2 W running the Python programming language, always in simple terms and backed by many tested and working example projects. On part of the reader, familiarity with the Python programming language and some experience with one of the Raspberry Pi computers will prove helpful. Although previous electronics experience is not required, some knowledge of basic electronics is beneficial, especially when venturing out to modify the projects for your own applications.
Over 30 tested and working hardware-based projects are given in the book, covering the use of Wi-Fi, communication with smartphones and with a Raspberry Pi Pico W computer. Additionally, there are Bluetooth projects including elementary communication with smartphones and with the popular Arduino Uno. Both Wi-Fi and Bluetooth are key features of the Raspberry Pi Zero 2 W.
Some of the topics covered in the book are:
Raspberry Pi OS installation on an SD card
Python program creation and execution on the Raspberry Pi Zero 2 W
Software-only examples of Python running on the Raspberry Pi Zero 2 W
Hardware-based projects including LCD and Sense HAT interfacing
UDP and TCP Wi-Fi based projects for smartphone communication
UDP-based project for Raspberry Pi Pico W communication
Flask-based webserver project
Cloud storage of captured temperature, humidity, and pressure data
TFT projects
Node-RED projects
Interfacing to Alexa
MQTT projects
Bluetooth-based projects for smartphone and Arduino Uno communications
Le jeu de tournevis de précision PCW08I est un jeu de tournevis complet de 130 pièces, idéal pour la réparation de smartphones et d'ordinateurs. Il contient 117 embouts de vissage en acier au chrome vanadium de haute qualité, connu pour sa durabilité et sa dureté.Le manche en aluminium magnétisé de cet ensemble est doté d'une barre d'extension et d'un capuchon rotatif à 360 degrés. Cela permet d'utiliser le tournevis dans différentes positions pour atteindre facilement les endroits difficiles d'accès. La forme ergonomique du manche repose confortablement dans la main et permet un vissage précis.L'ensemble se caractérise par une fabrication de haute qualité et une qualité supérieure. Chaque composant est soigneusement fabriqué pour garantir une performance et une durabilité optimales. La tige d'extension flexible facilite le travail dans les espaces restreints et les endroits difficiles d'accès.Le jeu de tournevis de précision PCW08I est le cadeau idéal pour tout amateur. Avec ses nombreux embouts et accessoires pratiques, il offre tout ce dont vous avez besoin pour vos travaux de réparation et d'assemblage. La mallette de transport attrayante de l'ensemble permet de ranger toutes les pièces proprement et en toute sécurité.
Inclus
Embouts:
Embout Phillips (PH0, PH1, PH2, PH000, PH00, PH2)
Tête plate (SL1.0, SL1.5, SL2.5, SL3.0, SL3.5, SL4.0)
Hexagone (H1.5, H2.0, H2.5, H0.7, H0.9, H1.3, H3.0, H3.5, H4.0)
Torx (T2, T3, T4, T5H, T6H, T7H, T9H)
Pentalobes (P2, P5, P6)
Triangle (△3.0,△2.0,△2.3)
Tripler (Y0.6,Y1,Y2.0,Y2.5)
Manchon (SQ0,SQ1)
Type U (U2.6, U3.0)
Accessoires:
Mallette de transport de haute qualité
3 embouts longs
Rallonge flexible
Pince à épiler sécurisée ESD
Pied-de-biche en plastique
Ventouse
3 triangles
Ouvre-carte SIM
Adaptateur d'embout pour perceuse électrique
La caméra Raspberry Pi AI est un module de caméra compact basé sur le capteur de vision intelligent Sony IMX500. L'IMX500 combine un capteur d'image CMOS de 12 MP avec une accélération d'inférence intégrée pour divers modèles de réseaux neuronaux courants, ce qui permet aux utilisateurs de développer des applications d'IA sophistiquées basées sur la vision sans nécessiter d'accélérateur séparé.
La caméra AI améliore les images fixes ou vidéo capturées avec des métadonnées tensorielles, tout en laissant le processeur du Raspberry Pi libre pour d'autres tâches. La prise en charge des métadonnées tensorielles dans les bibliothèques libcamera et Picamera2, ainsi que dans la suite d'applications rpicam-apps, garantit la facilité d'utilisation pour les débutants tout en offrant une puissance et une flexibilité inégalées pour les utilisateurs avancés.
La caméra Raspberry Pi AI est compatible avec tous les modèles de Raspberry Pi.
Caractéristiques
Capteur de vision intelligent Sony IMX500 12 MP
Modes du capteur : 4056 x 3040 (@ 10fps), 2028 x 1520 (@ 30fps)
Taille des cellules de 1,55 x 1,55 µm
Champ de vision de 78° avec mise au point réglable manuellement
RP2040 intégré pour la gestion du réseau neuronal et du micrologiciel
Spécifications
Capteur
Sony IMX500
Résolution
12,3 MP (4 056 x 3 040 pixels)
Taille du capteur
7,857 mm (type 1/2,3)
Taille des pixels
1,55 x 1,55 μm
Filtre anti-IR
Intégré
Autofocus
Mise au point réglable manuellement
Plage de mise au point
20 cm – ∞
Longueur focale
4,74 mm
Champ de vue horizontal
66 ±3°
Champ de vue vertical
52,3 ±3°
Rapport focal (F-stop)
F1.79
Sortie
Image (Bayer RAW10), sortie FAI (YUV/RGB), ROI, métadonnées
Taille maximale du tenseur d'entrée
640 x 640 (H x V)
Taux de rafraîchissement
• 2 x 2 regroupés : 2028 x 1520 10 bits, 30 ips• Pleine résolution : 4056 x 3040, 10 bits, 10 ips
Longueur du câble ruban
20 cm
Connecteur de câble
15 x 1 mm FPC ou 22 x 0,5 mm FPC
Dimensions
25 x 24 x 11,9 mm
Téléchargements
Datasheet
Documentation
Le multimètre numérique portatif FNIRSI S1 permet la mesure précise des tensions alternatives et continues (CA/CC), des résistances, la détection de tension sans contact, la vérification des diodes, de la continuité électrique, la mesure de la capacité des condensateurs, de la température, de la fréquence et la détermination de la phase du réseau électrique. C’est un appareil très utile à la résolution des problèmes électriques dans l’industrie ou chez soi. Il convient aux installations électriques de l’habitation, aux fusibles, aux batteries (incluant celles des véhicules), à la recherche des pannes des circuits électriques et électroniques des automobiles, ainsi qu’aux systèmes de recharge etc.
Multimètre intelligent
Le multimètre peut automatiquement détecter les tensions CA/CC, les résistances et la continuité ce qui est pratique pour les débutants comme pour les professionnels.
Spécifications
Tension CA
0~1000 V
±(0,8% +3)
Tension CC
0~1000 V
±(0,8% +3)
Résistance
0~100 MΩ
±(1,2% +3)
Capacitance
0 nF~10 mF
±(4,5% +5)
Fréquence
0 Hz~10 Mhz
±(0,1% +3)
Température
−20~1000°C
±(2% +5)
Diode
Oui
Arrêt automatique
Oui
Rétroéclairage
Oui
Buzzer de mise en marche et arrêt
Oui
Calibre automatique
Oui
Détection de tension sans contact
Oui
Mesures en continu
Oui
Maintien de l’affichage
Oui
Analogique
Oui
Indication d’alimentation faible
Oui
Gamme d’affichage
9999 valeurs
Tensions valides
50 Hz~1 kHz
Matériau
ABS
Affichage
Écran couleur à pixels verticaux
Alimentation
via USB-C (batterie lithium rechargeable 1000 mA)
Dimensions
143 x 75 x 19 mm
Poids
135 g
Inclus
Multimètre FNIRSI S1
Cordons de mesure à pointe fine
Sonde de température
Câble USB
Notice
Downloads
Manual
L'Arduino Nano RP2040 Connect est une carte Arduino basée sur RP2040 et équipée de wifi (802,11b/g/n) et du Bluetooth 4,2.
En plus de la connectivité sans fil, la carte est livrée avec un microphone pour le son et l'activation vocale et un capteur de mouvement intelligent à six axes avec des capacités d'IA. Une LED RVB est également disponible. 22 ports GPIO (20 avec prise en charge du PWM et huit entrées analogiques) permettent à l'utilisateur de commander, par exemple, des relais, des moteurs et des LED et de lire des interrupteurs et d'autres capteurs.
Elle offre une grande quantité de mémoire de programme avec 16 Mo de mémoire flash, une capacité plus que suffisante pour stocker de nombreuses pages Web ou d'autres données.
Spécifications techniques
Microcontrôleur
Raspberry Pi RP2040
Connecteur USB
Micro USB
Pins
Broches de LED intégrées
13
20
20
Broche d'entrée analogique
8
Broche PWM
20 (sauf A6, A7)
Interruptions externes
20 (Sauf A6, A7)
Connectivité
Wi-Fi
Nina W102 module uBlox
Bluetooth
Nina W102 module uBlox
Élément de sécurité
ATECC608A-MAHDA-T Crypto IC
Capteurs
IMU
LSM6DSOXTR (6 axes)
Microphone
MP34DT05
Communication
UART
Oui
I²C
Oui
SPI
Oui
Puissance
Tension de fonctionnement du circuit
3.3 V
Tension d'entrée (VIN)
5-21 V
Courant continu par broche d'entrée/sortie
4 mA
Fréquence d'horloge
Processeur
133 MHz
Mémoire
AT25SF128A-MHB-T
Circuit Flash 16 Mo
Nina W102 module uBlox
448 Ko de ROM, 520 Ko de SRAM, 16 Mo de Flash
Dimensions
45 x 18 mm
Poids
6 g
Téléchargements
Schémas
Brochage
Fiche technique
Le multitâche et le multitraitement sont devenus un sujet très important dans les systèmes basés sur des microcontrôleurs, notamment dans les applications complexes d'automatisation commerciale, domestique et industrielle. À mesure que la complexité des projets augmente, davantage de fonctionnalités sont exigées des projets. De tels projets nécessitent l'utilisation de plusieurs tâches interdépendantes exécutées sur le même système et partageant les ressources disponibles, telles que le processeur, la mémoire et les ports d'entrée-sortie. En conséquence, l’importance des opérations multitâches dans les applications basées sur des microcontrôleurs n’a cessé de croître au cours des dernières années. De nombreux projets d'automatisation complexes utilisent désormais une forme de noyau multitâche. Ce livre est basé sur des projets et son objectif principal est d'enseigner les fonctionnalités de base du multitâche à l'aide du langage de programmation Python 3 sur Raspberry Pi. De nombreux projets entièrement testés sont fournis dans le livre utilisant les modules multitâches de Python. Chaque projet est décrit de manière complète et détaillée. Des listes complètes de programmes sont fournies pour chaque projet. Les lecteurs doivent pouvoir utiliser les projets tels quels ou les modifier en fonction de leurs propres besoins.
Les modules multitâches Python suivants ont été décrits et utilisés dans les projets :
Fourchette
Fil
Enfilage
Sous-processus
Multitraitement
Le livre comprend des projets multitâches simples tels que le contrôle indépendant de plusieurs LED, jusqu'à des projets multitâches plus complexes tels que le contrôle de la température marche/arrêt, le contrôle des feux de circulation, un compteur d'événements LED à 2 et 4 chiffres à 7 segments, une minuterie de réaction, un moteur pas à pas. contrôle, projets basés sur le clavier, contrôleur de parking et bien d'autres. Les concepts fondamentaux du multitâche tels que la synchronisation des processus, la communication des processus et les techniques de partage de mémoire ont été décrits dans des projets concernant les indicateurs d'événements, les files d'attente, les sémaphores, les valeurs, etc.
SD card quality is crucial for a good Raspberry Pi experience. Raspberry Pi's A2 microSD cards support higher bus speeds and command queuing, improving random read performance and narrowing the gap with NVMe SSDs. These cards are rigorously tested for optimal performance with Raspberry Pi models.
Caractéristiques
Capacity: 64 GB
Support for DDR50 and SDR104 bus speeds and command queueing (CQ) extension
Speed Class: C10, U3, V30, A2
Random 4 KB read performance: 3,200 IOPS (Raspberry Pi 4, DDR50) 5,000 IOPS (Raspberry Pi 5, SDR104)
Random 4 K write performance: 1,200 IOPS (Raspberry Pi 4, DDR50) 2,000 IOPS (Raspberry Pi 5, SDR104)
Shock-proof, X-ray–proof, and magnet-proof
microSDHC/microSDXC formats
Téléchargements
Datasheets
L'électronique est passionnée. C'est un plaisir amusant et instructif. Elle permet d'acquérir de nouvelles compétences, souvent utiles, à la maison et même au travail. Une expérience électronique avec ces circuits appropriés. Il donne vie à ses projets. Avant que le jour n'arrive, vous avez hâte de le voir ! Il est nécessaire de rassembler les articles pour la publication des articles du magazine d'électronique Elektor. Il sera le compagnon de vos progrès dans le monde de l'électronique.
Plus que commencer par l'électronique analogique. Vous pourrez découvrir les compositions et les circuits ainsi que les simples pour comprendre les fonctions, les interactions et les problèmes éventuels. La meilleure façon de progresser, c'est de faire des expériences réelles, car la théorie ne suffit pas. Un guide en direct pour un excellent guide de montages pratiques, notamment pour les débutants. Et pour en savoir plus, acquérir la meilleure expérience et connaissance.
La deuxième partie de la vie du monde du numérique électronique. En savoir plus sur l’utilisation des microcontrôles. Les effets des composants sont discrets grâce aux circuits intégrés des principaux composants des microcontrôleurs. La programmation à long terme de BASCOM, basée sur les pré-requis à la mise en œuvre d'Arduino, BBC micro:bit et d'autres, facilite la prise en compte de l'apprentissage. Voici une description détaillée des nombreuses applications des microcontrôleurs, abordables pour les néophytes. Ici, programmation et soudage font bon ménage !
Le Raspberry Pi M.2 HAT+ vous permet de connecter des périphériques M.2 tels que des disques NVMe et des accélérateurs AI à l'interface PCIe 2.0 du Raspberry Pi 5, prenant en charge un transfert de données rapide (jusqu'à 500 Mo/s) vers et des disques NVMe et autres accessoires PCIe.
Raspberry Pi M.2 HAT+ prend en charge les appareils dotés du connecteur M.2 M key edge, dans les formats 2230 et 2242. Il est capable de fournir jusqu'à 3 A aux appareils M.2 connectés.
Caractéristiques
Prend en charge l'interface PCIe 2.0 à voie unique (taux de transfert maximal de 500 Mo/s)
Prend en charge les appareils qui utilisent le connecteur Key Edge M.2 M
Prend en charge les appareils au format 2230 ou 2242
Capable de fournir jusqu'à 3 A aux appareils M.2 connectés
Comprend des voyants d'alimentation et d'activité
Inclus
1x Raspberry Pi 5 M.2 HAT+
1x câble ruban
1x en-tête d'empilage GPIO
4x entretoises
8x vis
Téléchargements
Datasheet
Schematics
Assembly instructions
A Hands-on Guide to Crafting Your Own Power Plant
The book you are about to read provides a step-by-step guide for building a renewable energy power plant at home. Our goal was to make the book as practical as possible. The material is intended for immediate application with a small amount of theory. Yet, the theory is important as a foundation that saves time and effort by disabusing the readers of potential misconceptions. Specifically, upon having a firm understanding of photovoltaic physics, you will not be inclined to fruitlessly search for 90% efficient solar panels!
We want our readers to be the “doers”. If the book gets covered in grime and some pages become torn while you are building your power plant – this is the best compliment to us. The book covers solar and wind energy. Also, a curious power source based on manure is discussed as well, giving the doers an opportunity to further develop the manure fuel cell.
It is important to note that there are many companies offering installation of complete solar solutions. Upon installing the panels, the system is not owned by the customer. Therefore, there is no freedom for experimentation and optimization. Also, none can beat the cost of a DIY solution as well as the ultimate satisfaction.
All that is written here is a result of us building a renewable energy solution in Southern California. As the book was completed, the energy began flowing!
Cet ensemble contient 3 pointes de dessoudage pour les stations de dessoudage numériques telles que ZD-915 ou ZD-8965.
Inclus
1x Panne à dessouder N5-1 (0,8 mm)
1x Panne à dessouder N5-2 (1,0 mm)
1x Panne à dessouder N5-3 (1,3 mm)
Cet Armor Case à base d'aluminium est parfait pour votre Raspberry Pi 4 s'il fait chaud, car il le protège également des chocs et de la chaleur. Le fraisage des canaux combiné à deux ventilateurs offre les meilleures performances de refroidissement. C'est pourquoi il convient aux environnements extrêmes. Un autre avantage est que ce boîtier ne nécessite pas plus d'espace que le Raspberry Pi lui-même et peut être intégré dans des projets existants.
Caractéristiques
Matériau : alliage d'aluminium fraisé CNC.
Compatible avec le Raspberry Pi 4B
Assemblage : 4 vis fournies relient le boîtier au Raspberry Pi
Particularités : Grand dissipateur thermique et double ventilateur Ø24 mm chacun, protection massive contre la chaleur et les chocs, aucun espace supplémentaire nécessaire
Câblage : ventilateur 5 V (rouge) - 5 V (Pin4), ventilateur GND (noir) - GND (Pin6)
Contenu de la livraison : Valise blindée « BLOCK ACTIVE », vis, ruban thermique
Dimensions face supérieure : 69 x 56 x 15,5 mm
Dimensions côté inférieur : 87 x 56 x 7,5 mm
Téléchargements
Manuel