ESP32-C3-DevKitM-1 est une carte de développement d'entrée de gamme basée sur l'ESP32-C3-MINI-1, un module nommé pour sa petite taille. Cette carte intègre des fonctions Wi-Fi et Bluetooth LE complètes. La plupart des broches d'E/S du module ESP32-C3-MINI-1 sont réparties sur les connecteurs des deux côtés de la carte pour faciliter l'interfaçage. Les développeurs peuvent soit connecter les périphériques avec des fils de liaison, soit monter l'ESP32-C3-DevKitM-1 sur une plaque d’expérimentation. Caractéristiques ESP32-C3-MINI-1 L'ESP32-C3-MINI-1 est un module polyvalent Wi-Fi et Bluetooth LE, livré avec une antenne sur circuit imprimé. Au cœur de ce module se trouve la puce ESP32-C3FN4, qui intègre une mémoire flash de 4 Mo. La flash étant intégrée à la puce ESP32-C3FN4 plutôt qu'au module, le module ESP32-C3-MINI-1 est plus petit. 5 V à 3,3 V LDO Régulateur de tension qui convertit une alimentation de 5 V en une tension de 3,3 V. 5 V LED de mise sous tension S'allume lorsque l'alimentation USB est connectée à la carte. Tête de broche Toutes les broches GPIO disponibles (à l'exception du bus SPI pour la flash) sont réparties sur les connecteurs d’extension de la carte. Pour plus de détails, veuillez consulter le bloc d'en-tête. Bouton Boot Bouton de téléchargement. En maintenant la touche Boot enfoncée, puis en appuyant sur Reset, vous passez en mode de téléchargement de micrologiciel pour télécharger le micrologiciel via le port série. Port Micro-USB Interface USB. Alimentation de la carte ainsi que de l'interface de communication entre un ordinateur et la puce ESP32-C3FN4. Bouton de réinitialisation Appuyez sur ce bouton pour redémarrer le module. Pont USB/UART Une seule puce de pont USB-UART fournit des taux de transfert allant jusqu'à 3 Mbps. LED RVB LED RVB adressable, pilotée par GPIO 8. Téléchargements ESP32-C3 Datasheet ESP32-C3-MINI-1 Datasheet ESP32-C3-DevKitM-1 Schematic ESP32-C3-DevKitM-1 PCB Layout ESP32-C3-DevKitM-1 Dimensions
Ce module CAN est basé sur le contrôleur de bus CAN MCP2515 et l'émetteur-récepteur CAN TJA1050. Avec ce module, vous pourrez facilement contrôler n'importe quel appareil CAN Bus par interface SPI avec votre MCU, tel qu'Arduino Uno et ainsi de suite.
Caractéristiques
Prise en charge PEUT V2.0B
Taux de communication jusqu'à 1 Mo/s
Tension de fonctionnement : 5 V
Courant de fonctionnement : 5 mA
Interface : SPI
Téléchargements
Fiche technique MCP2515
Fiche technique TJA1050
Le dongle nRF52840 est un petit dongle USB à faible coût qui prend en charge les protocoles propriétaires Bluetooth 5.3, Bluetooth mesh, Thread, ZigBee, 802.15.4, ANT et 2,4 GHz. Le dongle est le matériel cible idéal à utiliser avec nRF Connect for Desktop car il est peu coûteux mais prend toujours en charge toutes les normes sans fil à courte portée utilisées avec les appareils nordiques. Le dongle a été conçu pour être utilisé comme périphérique matériel sans fil avec nRF Connect for Desktop. Pour d'autres cas d'utilisation, veuillez noter qu'il n'y a pas de support de débogage sur le dongle, seulement un support pour la programmation de l'appareil et la communication via USB.
Il est pris en charge par la plupart des applications nRF Connect for Desktop et sera automatiquement programmé si nécessaire. De plus, des applications personnalisées peuvent être compilées et téléchargées sur le dongle. Il dispose d'une LED RVB programmable par l'utilisateur, d'une LED verte, d'un bouton programmable par l'utilisateur ainsi que de 15 GPIO accessibles à partir de points de soudure crénelés le long du bord. Des exemples d'applications sont disponibles dans le SDK nRF5 sous le nom de carte PCA10059.
Le dongle nRF52840 est pris en charge par nRF Connect for Desktop ainsi que par la programmation via nRFUtil.
Caractéristiques
Radio multiprotocole compatible Bluetooth 5.2
2Mbps
Longue portée
Extensions de publicité
Algorithme de sélection de canal n°2 (CSA n°2)
Prise en charge radio IEEE 802.15.4
Fil
ZigBee
Arm Cortex-M4 avec prise en charge de la virgule flottante Jeu d'instructions DSP
Accélérateur cryptographique ARM CryptoCell CC310
15 GPIO disponibles via créneaux de bord
Interface USB directement vers le SoC nRF52840
Antenne PCB 2,4 GHz intégrée
1 bouton programmable par l'utilisateur
1 LED RVB programmable par l'utilisateur
1 LED programmable par l'utilisateur
Fonctionnement 1,7-5,5 V depuis USB ou externe
Téléchargements
Fiche de données
Fichiers matériels
Ce kit à monter soi-même (HU-017A) est un récepteur radio FM sans fil possédant un affichage à 4 chiffres et 7 segments. Il fonctionne dans la bande de fréquence mondiale de réception FM de 87,0-108,0 MHz, ce qui permet de l'utiliser dans n'importe quel pays ou région. Le kit offre deux modes d'alimentation, ce qui vous permet de l'utiliser à la maison comme aussi en extérieur. Ce montage électronique fait maison vous aidera à comprendre les circuits et à perfectionner vos compétences en matière de soudage.
Caractéristiques
Radio FM 87,0-108,0 MHz : Processeur de données FM RDA5807 intégré avec une bande de fréquence de réception FM standard. La fréquence FM peut être réglée à l'aide des touches F+ et F-.
Réglage du volume : Deux méthodes de réglage du volume – bouton et potentiomètre. Ils proposent 15 niveaux de volume.
Sortie audio active et passive : Le kit dispose d'un amplificateur de puissance intégré de 0,5 W pour alimenter directement des haut-parleurs de 8 Ω. Il émet également des signaux audio vers des casques ou des haut-parleurs dotés d'interfaces AUX, ce qui permet une écoute personnelle ou public de l'audio FM.
Equipé d'une antenne FM dédiée de 25 cm et d'un afficheur (en rouge) à 4 chiffres et 7 segments pour l'affichage en temps réel de la fréquence radio FM. Le boîtier transparent acrylique protège le circuit imprimé interne. Deux méthodes d'alimentation sont prises en charge : 5 V USB et 2 piles de 1,5 V (AA).
Soudage à la main : Le kit est livré avec divers composants qui doivent être installés manuellement. Ceci permet d'exercer et de perfectionner ses compétences en matière de soudure, et est également adapté aux amateurs d'électronique, aux débutants ainsi qu'à des fins d'éducation.
Spécifications
Tension d'exploitation
DC 3 V/5 V
Impédance de sortie
8 Ω
Puissance de sortie
0,5 W
Canal de sortie
Mono
Fréquence de réception
87.0 MHz~108.0 MHz
Précision de la féquence
0.1 MHz
Température d'exploitation
−40°C à +85°C
Taux d'humidité d'exploitation
5% à 95% d'humidité relative
Dimensions
107 x 70 x 23 mm
IMPORTANT : Retirez les piles lorsque vous alimentez la radio via USB !
Inclus
1x circuit imprimé
1x récepteur FM RDA5807M
1x microcontrôleur STC15W404AS
1x socle pour IC
1x registreà décalage 74HC595D
1x amplificateur TDA2822M
1x socle pour IC
1x convertisseur de tension 3,3 V AMS1117
18x résistances à film métallique
1x potentiomètre
4x condensateurs céramiques
5x condensateurs électrolytiques
4x transistors S8550
1x DEL rouge
1x afficheur à 4 chiffres et 7 segments
1x interrupteur à bascule
1x prise CMS Micro USB
1x antenne radio
1x prise audio AUX
4x boutons noirs
4x capuchons de bouton
1x haut-parleur 0,5 W/8 Ω
1x fil rouge/noir
2x adhésifs doubles face
1x boîtier pour piles AA
1x câble USB
6x plaquettes acryliques
4x vis entretoises en nylon
4x vis M3
4x écrous M3
4x vis M2x22 mm
1x vis M2x6 mm
5x écrous M2
Avec ces fils de pontage (longueur : 20 cm) vous pouvez connecter un Raspberry Pi ou un Arduino sur des platine d'essai. Chaque câble est composé de 40 fils/broches individuels qui peuvent également être séparés.
Inclus
1x 40-broches femelle à femelle.
1x 40-broches mâle à mâle
1x 40-broches mâle à femelle
Accroche-regard basé sur Raspberry Pi
Une horloge à sable standard ne fait qu'indiquer le temps qui passe. En revanche, cette horloge à sable contrôlée par le Raspberry Pi Pico indique l'heure exacte en 'gravant' les quatre chiffres de l'heure et des minutes dans la couche de sable. Après un temps réglable, le sable est aplati par deux moteurs vibrants et tout recommence.
Au cœur de l'horloge de sable se trouvent deux servomoteurs qui entraînent un stylo dans un mécanisme de pantographe. Un troisième servomoteur soulève le stylo de haut en bas. Le bac à sable est équipé de deux moteurs vibrants qui aplatissent le sable. La partie électronique de l'horloge des sables se compose d'un Raspberry Pi Pico et d'une carte RTC/driver avec une horloge en temps réel, ainsi que des circuits de commande pour les servomoteurs.
Un manuel de construction détaillé peut être téléchargé.
Caractéristiques
Dimensions: 135 x 110 x 80 mm
Temps de construction : environ. 1,5 à 2 heures
Inclus
3x Feuilles acryliques prédécoupées avec toutes les pièces mécaniques
3x Mini servomoteurs
2x moteurs de vibration
1x Raspberry Pi Pico
1x Carte RTC/pilote avec les pièces assemblées
Ecrous, boulons, entretoises et fils pour l'assemblage
Sable blanc à grains fins
Caractéristiques
Boîtier en acier : Acier de haute qualité avec belle finition.
Petit écran LCD : Il peut afficher l'adresse IP, le nom de l'hôte, le temps de fonctionnement, et peut également être utilisé pour afficher d'autres informations. Le système d'exploitation PiKVM comprend un ensemble de bibliothèques qui vous permettent d'afficher presque n'importe quoi en utilisant Python.
Ventilateur pour un refroidissement actif : Il protégera votre appareil de la surchauffe. PiKVM est capable de contrôler la vitesse du ventilateur en utilisant le PWM, donc il ne fonctionnera pas à la vitesse maximale tout le temps.
Boîtier en plastique pour l'écran LCD : Ce petit morceau de plastique est responsable du support robuste de l'écran LCD à l'intérieur du boîtier. Le moulage par injection est utilisé pour fabriquer ce support d'écran.
Matériel d'assemblage : Un jeu de vis et d'écrous pour assembler le boîtier et installer le ventilateur.
Le Elektor Audio DSP FX Processor combine un microcontrôleur ESP32 et un DSP Audio ADAU1701 d'Analog Devices. Outre un noyau DSP programmable par l'utilisateur, l'ADAU1701 intègre des convertisseurs analogique-numérique et numérique-analogique de haute qualité et dispose d'un port I²S. Cela le rend approprié comme interface audio de haute qualité pour l'ESP32.
Les programmes pour l'ESP32 peuvent être créés avec Arduino, Platform IO, CMake ou en utilisant Espressif IDF d'une autre manière. Les programmes pour les DSP audio ADAU7101 sont créés avec l'outil de programmation visuelle gratuit SigmaStudio en glissant et déposant des blocs d'algorithmes prédéfinis sur un canevas.
Applications
Sink audio Bluetooth/Wi-Fi (par ex. haut-parleur) et source
Pédale d'effet guitare (stomp box)
Synthétiseur musical
Générateur de sons/fonctions
Filtre cross-over programmable pour haut-parleurs
Processeur d'effets audio avancé (réverbération, chorus, pitch shifting, etc.)
Appareil audio connecté à Internet
Plate-forme d'expérimentation DSP
MIDI sans fil
Convertisseur MIDI vers CV
et bien d'autres...
Spécifications
Processeur audio numérique ADAU1701 28/56 bits, 50 MIPS prenant en charge des taux d'échantillonnage allant jusqu'à 192 kHz
Microcontrôleur double cœur ESP32 32 bits avec Wi-Fi 802.11b/g/n et Bluetooth 4.2 BR/EDR et BLE
2 entrées audio 24 bits (2 V RMS, 20 kΩ)
4 sorties audio 24 bits (0,9 V RMS, 600 Ω)
4x potentiomètres de contrôle
Entrée et sortie MIDI
Port d'extension I²C
Fonctionnement multimode
Alimentation : USB 5 V CC ou 7,5-12 V CC (prise cylindrique, broche centrale GND)
Consommation de courant (moyenne) : 200 mA
Inclus
1x Carte Audio DSP FX Processor (assemblée)
1x ESP32-PICO-KIT
2x Cavaliers
2x Connecteurs à 18 broches (female)
4x Potentiomètres de 10 Ko
Téléchargements
Documentation
GitHub
Caractéristiques
Microcontrôleur RP2040 avec 2 Mo de Flash
Cortex double cœur M0+ jusqu'à 133 MHz
264 Ko de SRAM multi-banques hautes performances
Flash externe Quad-SPI avec eXecute In Place (XIP)
Tissu de bagues de barre transversale complète haute performance 30 E/S multifonctions à usage général (4 peuvent être utilisées pour l'ADC) Tension IO 1,8-3,3 V (REMARQUE. La tension Pico IO est fixée à 3,3 V)
Convertisseur analogique-numérique (ADC) 12 bits, 500 ksps
Divers périphériques numériques
2× UART, 2× I²C, 2× SPI, 16× canaux PWM
1 × minuterie avec 4 alarmes, 1 × compteur en temps réel
2 × blocs d'E/S programmables (PIO), 8 machines à états au total
E/S haute vitesse flexibles et programmables par l'utilisateur
Peut émuler des interfaces telles que la carte SD et VGA
Comprend W5100S
Prend en charge les protocoles Internet câblés : TCP, UDP, WOL sur UDP, ICMP, IGMPv1/v2, IPv4, ARP, PPPoE
Prend en charge 4 SOCKETS matériels indépendants simultanément
Mémoire interne de 16 Ko pour les tampons TX/RX
Interface SPI
Port micro-USB B pour l'alimentation et les données (et pour reprogrammer le Flash)
PCB à 40 broches 21x51 de style « DIP » de 1 mm d'épaisseur avec broches traversantes de 0,1' également avec créneaux de bord
Port de débogage de fil série ARM (SWD) à 3 broches
Ethernet 10/100 PHY intégré
Prend en charge la négociation automatique
Duplex intégral/semi-duplex
10/100 Basé
RJ45 intégré (RB1-125BAG1A)
LDO intégré (LM8805SF5-33V)
Téléchargements
Fiche technique RP2040
W5100S Fiche technique
Schéma, liste de pièces et fichier Gerber
Exemples C/C++
Exemples de circuits Python
Arduino Uno est une carte à microcontrôleur open-source basée sur l'ATmega328P. Elle possède 14 broches d'entrée/sortie numériques (dont 6 peuvent être utilisées comme sorties PWM), 6 entrées analogiques, un résonateur céramique de 16 MHz (CSTCE16M0V53-R0), une connexion USB, une prise d'alimentation, un connecteur ICSP et un bouton de réinitialisation. Il contient tout ce qui est nécessaire au fonctionnement du microcontrôleur ; il suffit de le connecter à un ordinateur avec un câble USB ou de l'alimenter avec un adaptateur CA-CC ou une batterie pour commencer. Vous pouvez bricoler avec votre Uno sans trop de soucis, dans le pire des cas, vous pouvez remplacer la puce pour quelques dollars et recommencer le travail.
« Uno » signifie un en italien et a été choisi pour marquer la sortie du logiciel Arduino (IDE) 1.0. La carte Uno et la version 1.0 du logiciel Arduino (IDE) étaient les versions de référence d'Arduino, qui ont maintenant évolué vers des versions plus récentes. La carte Uno est la première d'une série de cartes Arduino USB, et le modèle de référence de la plate-forme Arduino ; pour une liste exhaustive des cartes actuelles, passées ou obsolètes, voir l'index des cartes Arduino.
Spécifications
Microcontrôleur
ATmega328P
Tension de fonctionnement
5 V
Tension d'entrée (recommandée)
7-12 V
Tension d'entrée (limite)
6-20 V
Broches E/S numériques
14 (dont 6 fournissent une sortie PWM)
Broches E/S numériques PWM
6
Broches d'entrée analogique
6
Courant continu par broche d'entrée/sortie
20 mA
Courant continu pour la broche 3,3 V
50 mA
Mémoire flash
32 Ko (ATmega328P) dont 0,5 Ko utilisé par le bootloader
SRAM
2 KB (ATmega328P)
EEPROM
1 KB (ATmega328P)
Fréquence d'horloge
16 MHz
LED_BUILTIN
13
Dimensions
68,6 x 53,4 mm
Poids
25 g
Robot à équilibrage sur deux roues compatible Arduino et alimenté par ESP32
L'Elektor Mini-Wheelie est une plateforme robotique expérimentale autonome et auto-équilibrée. Basé sur un microcontrôleur ESP32-S3, le robot auto-équilibré est entièrement programmable à l'aide de l'environnement Arduino et de bibliothèques open source. Ses capacités sans fil lui permettent d'être contrôlé à distance via Wi-Fi, Bluetooth ou ESP-NOW ou de communiquer avec un utilisateur ou même un autre robot.
Un transducteur à ultrasons est disponible pour détecter les obstacles. Son écran couleur peut être utilisé pour afficher de jolies expressions faciales ou, pour les utilisateurs les plus terre-à-terre, des messages de débogage énigmatiques.
Le robot est livré en kit complet avec des pièces à assembler soi-même. Tout est inclus, même un tournevis.
Remarque : Le Mini-Wheelie est une plateforme de développement pédagogique destinée à l'apprentissage, à l'expérimentation et au développement de la robotique. Il n'est pas considéré comme un jouet pour enfants, et ses caractéristiques, sa documentation et le public auquel il s'adresse reflètent cet objectif. Le produit est destiné aux étudiants, aux éducateurs et aux développeurs qui souhaitent explorer la robotique, la programmation et l'intégration de matériel dans un cadre éducatif.
Spécifications
Microcontrôleur ESP32-S3 avec Wi-Fi et Bluetooth
MPU6050 unité de mesure inertielle (IMU) à 6 axes
Deux moteurs électriques 12 V à commande indépendante avec tachymètre
Transducteur à ultrasons
Écran couleur TFT 2,9 pouces (320 x 240)
Emplacement pour carte MicroSD
Moniteur de puissance de la batterie
Batterie Li-Po rechargeable 3S (11,1 V/2200 mAh)
Chargeur de batterie inclus
Logiciel Open Source basé sur Arduino
Dimensions (L x L x H) : 23 x 8 x 13 cm
Inclus
1x Carte mère ESP32-S3 + module MPU6050
1x Carte LCD (2,9 pouces)
1x Capteur à ultrasons
1x Batterie (2200 mAh)
1x Chargeur de batterie
1x Kit de pneus moteur
1x Tableau de caisse
1x Tableau acrylique
1x Tournevis
1x Bande de protection
1x Câble flexible B (8 cm)
1x Câble flexible A (12 cm)
1x Câble flexible C
4x Colonnes A en cuivre (25 mm)
4x Colonnes B en cuivre (55 mm)
4x Colonnes C en cuivre (5 mm)
2x Colonnes en plastique et nylon
8x Vis A (10 mm)
24 Vis B (M3x5)
8x Noix
24x Rondelles métalliques
2x Attaches zippées
1x Carte MicroSD (32 Go)
Téléchargements
Documentation
La carte Uno R3 est le microcontrôleur parfait pour ceux qui souhaitent entrer dans le monde de la programmation sans problème.
Le microcontrôleur ATMega328 vous offre suffisamment de puissance pour vos idées et projets. La carte Uno dispose d'une connexion USB de type B, ce qui vous permet de l'utiliser facilement avec des programmes - bien sûr via l'environnement de programmation bien connu Arduino IDE.
Vous pouvez le connecter à la source d'alimentation via le port USB ou utiliser sa propre connexion d'alimentation.
Remarque : Le pilote CH341 doit être préinstallé pour que la carte Uno soit reconnue par l'IDE Arduino.
Microcontrôleur
ATmega 328
Vitesse de l'horloge
16 MHz
Tension de fonctionnement
5 V
Tension d'entrée
5-10 V
Broches d'E/S numériques
14
avec MLI
6
USB
1 fois
IPS
1 fois
I²C
1 fois
ICSP
1 fois
Mémoire flash
32 Ko
EEPROM
1 fois
Caractéristiques
Modèle de produit: HW-818
Tension de fonctionnement : 5 V CC.
Taille du produit : 27 mm x 48,5 mm x 4,5 mm / 1,06" x 1,9" x 0,17"
Flash SPI : 32 Mbits par défaut
RAM : 520 Ko interne + 4 MPSRAM externe
Bluetooth : normes Bluetooth 4.2 BR/EDR et BLE
Wi-Fi : 802 II b/g/n/e/i
Interfaces prises en charge : UART, SPI, I2C, PWM
Prise en charge de la carte TF : prise en charge maximale de la 4G
Port E/S : 9
Débit du port série : 115 200 BPS par défaut
Format de sortie d'image : JPEG (OV2640 uniquement), BMP, GRAYSCALE
Plage de spectre : 2 412-2 484 MHz
Forme d'antenne : antenne PCB, gain 2 dBi.
Puissance d'émission:
802.l1b : 17 + 2 dBm (1 lMbps)
802.l1g : 14+2 dBm (54 Mbit/s)
802.l1n : 13+2 dBm (MCS7)
Ce kit RFID RC522 comprend un module de lecture RF 13,56 MHz qui utilise un circuit intégré RC522 et deux cartes RFID S50 pour vous aider à apprendre et à ajouter la transition RF 13,56 MHz à votre projet. Le MF RC522 est un module de transmission à haute intégration pour la communication sans contact à 13,56 MHz. Le RC522 prend en charge le mode ISO 14443A/MIFARE. Le module utilise la liaison SPI pour communiquer avec les microcontrôleurs. La communauté open-hardware compte déjà de nombreux projets exploitant le RC522 - Communication RFID, avec l'Arduino. Caractéristiques Courant de fonctionnement : 13-26 mA/DC 3,3 V Courant de repos : 10-13 mA/DC 3,3 V Courant de veille : Courant de crête : Fréquence de fonctionnement : 13.56 MHz Types de cartes pris en charge : mifare1 S50, mifare1 S70 MIFARE Ultralight, Mifare Pro, MIFARE DESFire Température ambiante de fonctionnement : -20-80 degrés Celsius Température ambiante de stockage : -40-85 degrés Celsius Humidité relative : humidité relative de 5 % à 95 % Distance de lecture : ≥50 mm/1,95' (Mifare 1) Taille du module : 40×60 mm/1.57*2.34' Paramètre des interfaces du module SPI Taux de transfert de données : 10 Mbit/s maximum Inclus 1x Module RFID-RC522 1x Carte vierge S50 standard 1x Carte S50 format spécial (comme la forme de porte-clés) 1x Broche droite 1x Broche courbée Téléchargements Bibliothèque Arduino Fiche technique duMFRC522 MFRC522_ANT Mifare S50
Le compteur d'énergie Elektor ESP32 est un appareil conçu pour la surveillance de l'énergie en temps réel et l'intégration de la maison connectée. Alimenté par le microcontrôleur ESP32-S3, il offre des performances robustes avec des fonctionnalités modulaires et évolutives.
L'appareil utilise un transformateur abaisseur de 220 V à 12 V pour l'échantillonnage de tension, garantissant ainsi l'isolation galvanique et la sécurité. Sa configuration PCB compacte comprend des borniers à vis pour des connexions sécurisées, un connecteur Qwiic pour des capteurs supplémentaires et un connecteur de programmation pour une configuration directe ESP32-S3. Le compteur d'énergie est compatible avec les systèmes monophasés et triphasés, ce qui le rend adaptable à diverses applications.
Le compteur d'énergie est simple à configurer et s'intègre à Home Assistant, offrant des capacités de surveillance en temps réel, d'analyse historique et d'automatisation. Il fournit des mesures précises de tension, de courant et de puissance, ce qui en fait un outil précieux pour la gestion de l'énergie dans les maisons et les entreprises.
Caractéristiques
Surveillance complète de l'énergie : Obtenez des informations détaillées sur votre consommation d'énergie pour une gestion plus intelligente.
Logiciel personnalisable : Adaptez les fonctionnalités à vos besoins en programmant et en intégrant des capteurs personnalisés.
Prêt pour la maison connectée : Compatible avec ESPHome, Home Assistant et MQTT pour une intégration complète à la maison connectée.
Conception sûre et flexible : Fonctionne avec un transformateur abaisseur de 220 V à 12 V et comporte une carte CMS pré-assemblée.
Démarrage rapide : Comprend un capteur de transformateur de courant et un accès à des ressources de configuration gratuites.
Spécifications
Microcontrôleur
ESP32-S3-WROOM-1-N8R2
CI de mesure d'énergie
ATM90E32AS
Indicateurs d'état
4 LED pour l'indication de la consommation électrique2 LED programmables pour les notifications d'état personnalisées
Entrée utilisateur
2x boutons-poussoirs pour le contrôle utilisateur
Afficher la sortie
Écran OLED I²C pour une visualisation de la consommation électrique en temps réel
Tension d'entrée
110/220 V AC (via transformateur abaisseur)
Puissance d'entrée
12 V (via transformateur abaisseur ou entrée DC)
Capteur de courant à pince
YHDC SCT013-000 (100 A/50 mA) inclus
Intégration de la maison connectée
ESPHome, Home Assistant et MQTT pour une connectivité transparente
Connectivité
En-tête pour la programmation, Qwiic pour l'extension du capteur
Applications
Prend en charge les systèmes de surveillance de l'énergie monophasés et triphasés
Dimensions
79,5 x 79,5 mm
Inclus
1x Carte partiellement assemblée (les composants CMS sont pré-montés)
2x Connecteurs de bornier à vis (non montés)
1x Transformateur de courant YHDC SCT013-000
Requis
Transformateur de puissance non inclus
Téléchargements
Datasheet (ESP32-S3-WROOM-1)
Datasheet (ATM90E32AS)
Datasheet (SCT013-000)
Frequently Asked Questions (FAQ)
Du prototype au produit fini
Ce qui a commencé comme un projet innovant visant à créer un compteur d'énergie fiable et convivial utilisant le microcontrôleur ESP32-S3 est devenu un produit robuste. Initialement développé en tant que projet open source, le compteur d'énergie ESP32 visait à fournir une surveillance précise de l'énergie, une intégration de maison intelligente et bien plus encore. Grâce à un développement méticuleux du matériel et du micrologiciel, le compteur d'énergie se présente désormais comme une solution compacte et polyvalente pour la gestion de l'énergie.
Sifflez et il vous répondra en gazouillant ! Même si de nombreuses personnes possèdent et observent avec amour des oiseaux de toutes sortes, malheureusement la plupart d'entre eux n'ont pas encore appris à communiquer avec nous. Cet oiseau entièrement électronique fait un pas dans la bonne direction : lorsque vous sifflez, il vous répond en gazouillant ! Caractéristiques Réagit au Sifflement Sons d'Oiseaux Réglables (Ton et Durée) Symboles de Circuit Patrimoine d'Elektor Testé et Approuvé par les Laboratoires Elektor Projet Éducatif et Geek Pièces Montage Traditionnel Seulement Inclus Carte de Circuit Imprimé Tous les Composants Socle en Bois Liste des Composants Résistances R1,R2 = 2.2kΩ R3,R4,R13 = 47kΩ R5 = 4.7kΩ R6 = 3.3kΩ R7,R10,R11,R12,R17 = 100kΩ R8,R19,R23 = 1kΩ R9 = 1MΩ R14,R15 = 10kΩ R16,R18 = 470kΩ R20 = 68kΩ R21 = 10MΩ R22 = 2.7kΩ R24 = 22Ω P1,P2 = 1MΩ P3,P5 = 470kΩ P4 = 100kΩ Condensateurs C1,C2,C12 = 100nF C3,C4 = 10nF C5 = 22μF, 16V C6,C7,C11 = 10μF, 16V C8 = 2.2μF, 100V C9 = 1μF, 50V C10 = 2.2nF C13 = 10nF Semi-conducteurs D1,D3,D4,D5,D6,D7,D8 = 1N4148 D2 = Diode zener 3V3 T1,T2 = BC557B T3 = BC547B T4 = BC327-40 IC1 = TL084CN IC2 = 4093 Divers BT1 = Pince de batterie câblée pour 6LR61/PP3 LS1 = Haut-parleur miniature, 8Ω, 0.5W S1 = Interrupteur, glissière, SPDT MIC1 = Microphone électret PCB 230153-1 v1.1
Le kit de test Super Servo Elektor permet le contrôle des servomoteurs et la mesure de leurs signaux. Il permet le test simultané de quatre servomoteurs.
Le testeur est fourni en kit. Tous les composants nécessaires à l'assemblage du dispositif sont fournis dans le kit. Une expérience basique de soudure électronique est nécessaire pour réaliser l'assemblage du kit. Le microcontrôleur est préprogrammé.
Le testeur Super Servo est doté de deux modes de fonctionnement: Control/Manual et Measure/Inputs :
Dans le mode Control/Manual, le Testeur Super Servo délivre à ses sorties , les signaux de contrôle pour quatre servomoteurs, ou pour un contrôleur de vol ou un contrôleur de vitesse ESC (Electronic Speed Controller) pour moteur sans balai (brushless). Les signaux sont contrôlés par quatre potentiomètres.
Dans le mode Measure/Inputs le Testeur Super Servo mesure les signaux des servomoteurs reliés à ses entrées. Ces signaux peuvent par exemple provenir d'un ESC, d'un contrôleur de vol, d'un récepteur ou de tout autre dispositif. Les signaux sont également dirigés vers ses sorties afin de contrôler les servomoteurs, l'ESC ou le contrôleur de vol. Les résultats sont visualisés sur l'écran.
Spécifications
Modes de fonctionnement
Control/Manual et Measure/Inputs (Contrôle manuel et mesures)
Nombre de canaux
3
Entrées des signaux des servomoteurs
4
Sorties des signaux vers les servomoteurs
4
Alarme
Buzzer & LED
Affichage
Écran OLED de 0,96' (128 x 32 pixels)
Tension d'entrée K5
7-12 V CC
Tension d'entrée K1
5-7,5 V CC
Courant d'entrée
30 mA (9 VDC sur K5, K1 et K2 non reliés)
Dimensions
113 x 66 x 25 mm
Poids
60 g
Inclus
Résistances (0,25 W)
R1, R3
1 kΩ, 5%
R2, R4, R5, R6, R7, R9, R10
10 kΩ, 5%
R8
22 Ω, 5%
P1, P2, P3, P4
10 kΩ, potentiomètre vertical linéaire/B
Condensateurs
C1
100 µF 16 V
C2
10 µF 25 V
C3, C4, C7
100 nF
C5, C6
22 pF
Semiconducteurs
D1
1N5817
D2
LM385Z-2.5
D3
BZX79-C5V1
IC1
7805
IC2
ATmega328P-PU, programmé
LED1
LED, 3 mm, rouge
T1
2N7000
Divers
BUZ1
Buzzer Piezo avec oscillateur
K1, K2
Connecteur à 2 rangées de 12 broches à 90°
K5
Connecteur jack
K4
Connecteur à 1 rangée de 4 broches
K3
Connecteur à 2 rangées de 6 broches
S1
Interrupteur à glissière 2P2T
S2
Interrupteur à glissière 1P2T
X1
Quartz, 16 MHz
Support DIP 28 broches pour IC2
Circuit imprimé Elektor
Afficheur OLED de 0,96', 128 x 32 pixels, interface I²C à 4 broches
Liens
Elektor Magazine
Elektor Labs
La télécommande universelle TV-B-Gone vous permet d'allumer ou d'éteindre pratiquement n'importe quel téléviseur. Vous contrôlez quand vous regardez la télévision, plutôt que ce que vous voyez. La télécommande porte-clés TV-B-Gone est si petite qu'elle se glisse facilement dans votre poche pour que vous l'ayez à portée de main quand vous en avez besoin, où que vous alliez : bars, restaurants, laveries automatiques, stades de baseball, arènes, etc.
Le kit TV-B-Gone est un excellent moyen d'enseigner l'électronique. Lorsqu'il est soudé ensemble, il vous permet d'éteindre presque n'importe quel téléviseur dans un rayon de 150 pieds ou plus. Il fonctionne sur plus de 230 codes d'alimentation au total – 115 codes américains/asiatiques et 115 autres codes européens. Vous pouvez sélectionner la zone souhaitée lors de l’assemblage du kit.
Il s'agit d'un kit non assemblé, ce qui signifie que la soudure et l'assemblage sont nécessaires – mais c'est très simple et constitue une excellente introduction à la soudure en général. Ce kit rend la télécommande TV-B-Gone populaire plus amusante car vous l'avez créée vous-même avec quelques bases de soudure et d'assemblage ! Montrez à vos amis et à votre famille à quel point vous êtes doué en technologie et divertissez-les avec la puissance du TV-B-Gone !
Le kit est alimenté par 2 piles AA et la sortie provient de 2 LED IR à faisceau étroit et de 2 LED IR à faisceau large.
Inclus
Toutes les pièces/composants requis
Requis
Outils, fer à souder et piles
Téléchargements
GitHub
L'adaptateur milliohmmètre Elektor utilise la précision d'un multimètre pour mesurer des valeurs de résistance très faibles. Il convertit une résistance en tension mesurable avec un multimètre standard.
L'adaptateur milliohmmètre Elektor permet de mesurer des résistances inférieures à 1 mΩ grâce à la méthode 4 fils (Kelvin). Il est utile pour localiser les courts-circuits sur les circuits imprimés.
L'adaptateur dispose de trois plages de mesure : 1 mΩ, 10 mΩ et 100 mΩ, sélectionnables via un interrupteur à glissière. Il intègre également des résistances d'étalonnage. L'adaptateur milliohmmètre Elektor est alimenté par trois piles AA de 1,5 V (non fournies).
Spécifications
Gammes de mesure
1 mΩ, 10 mΩ, 100 mΩ, 0,1%
Alimentation
3x piles AA 1,5 V (non fournies)
Dimensions
103 x 66 x 18 mm (compatible avec le boîtier de type Hammond 1593N, non fourni)
Spécificité
Résistances d'étalonnage intégrées
Téléchargements
Documentation
ILI9341 est un pilote SOC monopuce de 262 144 couleurs pour un écran à cristaux liquides TFT avec une résolution de 240 x 320 points (RVB), comprenant un pilote source de 720 canaux, un pilote de porte de 320 canaux, 172 800 octets de GRAM pour des données d'affichage graphique de 240 x 320. points (RVB) et circuit d'alimentation.
ILI9341 prend en charge l'interface MCU de bus de données parallèle 8-/9-/16-/18 bits, l'interface RVB de bus de données 6-/16-/18 bits et l'interface périphérique série 3-/4 lignes (SPI).
La zone d'image animée peut être spécifiée dans le GRAM interne par la fonction d'adresse de fenêtre. La zone de fenêtre spécifiée peut être mise à jour de manière sélective, de sorte que l'image animée puisse être affichée simultanément indépendamment de la zone d'image fixe.
L'ILI9341 peut fonctionner avec une tension d'interface 1,65 V ~ 3,3 VI/O et un circuit suiveur de tension intégré pour générer des niveaux de tension pour piloter un écran LCD. L'ILI9341 prend en charge le mode d'affichage couleur, 8 couleurs et le mode veille pour un contrôle précis de l'alimentation par logiciel. Ces fonctionnalités font de l'ILI9341 un pilote LCD idéal pour les produits portables de taille moyenne ou petite tels que les téléphones cellulaires numériques, les téléphones intelligents, les MP3 et les PMP pendant de longues périodes. la durée de vie de la batterie est une préoccupation majeure.
Caractéristiques
Résolution d'affichage : 240 x 320 (RVB)
Sortie : 720 sorties sources | 320 sorties de porte | Sortie d'électrode commune (VCOM)
Pilote LCD a-TFT avec affichage complet sur puce RAM : 172 800 octets
Interface système
Interface 8 bits, 9 bits, 16 bits, 18 bits avec MCU série 8080-Ⅰ/8080-Ⅱ
Interface RVB 6 bits, 16 bits, 18 bits avec contrôleur graphique
Interface série 3 lignes/4 lignes
Mode d'affichage:
Mode couleur (mode veille désactivé) : 262 000 couleurs
Mode couleur réduit (mode veille activé) : 8 couleurs
Modes d'économie d'énergie :
Mode veille
Mode veille profonde
Fonctions sur puce :
Générateur et réglage VCOM
Générateur de chronométrage
Oscillateur
Convertisseur DC/DC
Inversion ligne/trame
1 courbe Gamma prédéfinie avec correction Gamma RVB séparée
Contrôle adaptatif de la luminosité du contenu
MTP (3 fois) :
8 bits pour ID1, ID2, ID3
7 bits pour le réglage VCOM
Architecture à faible consommation d'énergie
Alimentations à faible fonctionnement :
VDDI = 1,65 V ~ 3,3 V (logique)
VCI = 2,5 V ~ 3,3 V (analogique)
Commande de tension LCD :
Tension d'alimentation source/VCOM
AVDD-GND = 4,5 V ~ 5,5 V
VCL-GND = -2,0 V ~ -3,0 V
Tension de sortie du pilote de grille
VGH-GND = 10,0 V ~ 20,0 V
VGL-GND = -5,0 V ~ -15,0 V
VGH-VGL 3 ≦ 2V
Tension de sortie du pilote VCOM
VCOMH = 3,0 V ~ (AVDD – 0,5) V
VCOML = (VCL+0,5)V ~ 0V
VCOMH-VCOML ≦ 6,0 V
Plage de température de fonctionnement : -40 ℃ à 85 ℃
Ce câble série FTDI USB vers TTL (3.3 VI/O) (FTDI TTL-232R-3V3 OEM) est un appareil professionnel, de haute qualité et haute vitesse qui permet de connecter simplement et facilement des périphériques d'interface TTL à l'aide d'un port USB de rechange.
Caractéristiques
TTL-232R-3V3
Câble série FTDI USB vers TTL 3,3 V Câble FTDI TTL-232R-3V3 6 voies
Le FTDI USB vers TTL 3,3 V est doté d'un dispositif FTDI FT232R intégré au câble
Câble adaptateur FTDI USB vers TTL série 3,3 V, 6 broches, prise femelle 0,1'
Puce UART IC FT232RL
Compatible avec Windows 7/8/10 et Linux
Le générateur de signaux ICL8038 fournit des formes d'onde polyvalentes, notamment sinusoïdales, triangulaires, carrées et en dents de scie avant/arrière, ce qui le rend adapté à une large gamme d'applications. Alimenté par la puce ICL8038 et des amplificateurs opérationnels à grande vitesse, il garantit une précision et une stabilité du signal exceptionnelles.
Avec une plage de fréquences de 5 Hz à 400 kHz, il prend en charge les applications allant de l'audio aux fréquences radio. Son cycle de service réglable, allant de 2% à 95%, permet une personnalisation précise de la forme d'onde pour répondre à divers besoins.
Le kit DIY est adapté aux débutants et comprend des composants traversants pour un assemblage facile. Il comprend toutes les pièces nécessaires, une coque en acrylique et un manuel détaillé, fournissant tout le nécessaire pour construire et utiliser efficacement le générateur de signaux.
Spécifications
Plage de fréquence
5 Hz~400 KHz (réglable)
Tension d'alimentation
12 V~15 V
Plage de cycles de service
2%~95% (réglable)
Onde sinusoïdale à faible distorsion
1%
Dérive à basse température
50 ppm/°C
Linéarité de l'onde triangulaire de sortie
0,1%
Plage de polarisation CC
−7,5 V~7,5 V
Plage d'amplitude de sortie
0,1 V~11 VPP (tension de fonctionnement 12 V)
Dimensions
89 x 60 x 35 mm
Poids
81 g
Inclus
PCB inclus. tous les composants nécessaires
Boîtier en acrylique
Manuel
Construisez votre propre émetteur radio vintage
Le kit émetteur AM Elektor permet de diffuser de l’audio vers des récepteurs radio AM vintage. Basé sur un module microcontrôleur Raspberry Pi Pico, l’émetteur AM peut transmettre sur 32 fréquences dans la bande AM, de 500 kHz jusqu’à 1,6 MHz en 32 pas d’environ 35 kHz. La fréquence est sélectionnée à l’aide d’un potentiomètre et affichée sur un écran OLED de 0,96". Un bouton-poussoir permet de basculer le mode d’émission entre Marche et Arrêt. La portée de l’émetteur dépend de l’antenne. L’antenne intégrée offre une portée de quelques centimètres, nécessitant de placer l’émetteur AM à proximité ou à l’intérieur de la radio. Une antenne boucle externe (non incluse) peut être connectée pour augmenter la portée.
Le kit émetteur AM Elektor est livré en kit de pièces que vous devez souder vous-même sur la carte.
Caractéristiques
La carte est compatible avec un boîtier Hammond 1593N (non inclus).Une alimentation 5 VDC avec connecteur micro-USB (par exemple, un ancien chargeur de téléphone) est nécessaire pour alimenter le kit (non incluse). Consommation de courant : 100 mA.
Le logiciel Arduino (nécessitant le package RP2040 Boards d’Earle Philhower) pour le kit émetteur AM Elektor ainsi que plus d’informations sont disponibles sur la page Elektor Labs de ce projet.
Liste des composants
Résistances
R1, R4 = 100 Ω
R2, R3, R8 = 10 kΩ
R5, R6, R9, R10, R11 = 1 kΩ
R7 = optionnelle (non incluse)
P1 = potentiomètre 100 kΩ, linéaire
Condensateurs
C1 = 22 µF 16V
C2, C4 = 10 nF
C3 = 150 pF
Divers
K1 = barrette 4×1 broches
K2, K3 = prise 3,5 mm
Raspberry Pi Pico
Bouton-poussoir, montage en angle
Afficheur OLED I²C monochrome 0,96"
PCB 150292-1
Le kit DIY Mini Digital Oscilloscope (avec boîtier) est un kit facile à construire pour un minuscule oscilloscope numérique. Outre l'interrupteur d'alimentation, il ne comporte qu'une seule autre commande, un encodeur rotatif avec bouton-poussoir intégré. Le microcontrôleur du kit est préprogrammé. L'écran OLED de 0,96 pouces a une résolution de 128 x 64 pixels. L'oscilloscope dispose d'une voie qui peut mesurer des signaux jusqu'à 100 kHz. La tension d'entrée maximale est de 30 V, la tension minimale de 0 V.
Le kit se compose de composants à trous traversants (THT) et de dispositifs de montage en surface (SMD). Par conséquent, l'assemblage du kit implique de souder des pièces SMD, ce qui nécessite une certaine expérience en matière de soudure.
Spécifications
Plage verticale : 0 à 30 V
Plage horizontale : 100 µs à 500 ms
Type de déclencheur : automatique, normal et unique
Front de déclenchement : montant et descendant
Niveau de déclenchement : 0 à 30 V
Mode Exécution/Arrêt
Mesure automatique de la fréquence
Alimentation : micro-USB 5 V
Sortie sinusoïdale 10 Hz, 5 V
Sortie d'onde carrée de 9 kHz, 0 à 4,8 V
Affichage : écran OLED de 0,96 pouce
Dimensions : 57 x 38 x 26 mm
Téléchargements
Documentation
Vous trouverez ici toutes sortes de pièces, composants et accessoires dont vous avez besoin dans différents projets, depuis les simples fils, capteurs et écrans jusqu'aux modules et kits déjà pré-assemblés.