La SparkFun Thing Plus Matter est la première carte facilement accessible de ce type qui combine Matter et l'écosystème Qwiic de SparkFun pour le développement agile et le prototypage de dispositifs IoT basés sur Matter. Le module sans fil MGM240P de Silicon Labs offre une connectivité sécurisée pour les deux protocoles 802.15.4 avec communication Mesh (Thread) et Bluetooth Low Energy 5.3. Le module est prêt à être intégré au protocole Matter IoT de Silicon Labs pour la domotique.
Qu'est-ce que Matter ? En termes simples, Matter permet un fonctionnement cohérent entre les appareils domestiques intelligents et les plateformes IoT sans connexion Internet, même s'ils proviennent de fournisseurs différents. Ce faisant, Matter est capable de communiquer entre les principaux écosystèmes IoT afin de créer un protocole sans fil unique, facile à utiliser, fiable et sécurisé.
La Thing Plus Matter (MGM240P) comprend des connecteurs Qwiic et de batterie LiPo, ainsi que plusieurs connecteurs GPIO capables d'un multiplexage complet par le biais d'un logiciel. La carte comprend également le chargeur LiPo monocellulaire MCP73831 ainsi que la jauge de carburant MAX17048 pour charger et surveiller une batterie connectée. Enfin, un emplacement pour carte µSD est intégré pour tout besoin de mémoire externe.
Le module sans fil MGM240P est construit autour du SoC sans fil EFR32MG24 avec un processeur ARM Cortex-M33 à 32 bits fonctionnant à 39 MHz avec 1536 kb de mémoire Flash et 256 kb de RAM. Le MGM240P fonctionne avec les protocoles sans fil 802.15.4 courants (Matter, ZigBee et OpenThread) ainsi qu'avec Bluetooth Low Energy 5.3. Le MGM240P supporte le Secure Vault de Silicon Labs pour les applications Thread.
Spécifications
Module sans fil MGM240P
Construit autour du SoC sans fil EFR32MG24
Processeur Cœur ARM Cortex-M33 32 bits (@ 39 MHz)
Mémoire flash de 1536 Ko
256 Ko de RAM
Prise en charge de plusieurs protocoles sans fil 802.15.4 (ZigBee et OpenThread)
Bluetooth Low Energy 5.3
Prêt pour Matter
Prise en charge de Secure Vault
Antenne intégrée
Facteur de forme Thing Plus (compatible avec les fibres) :
Dimensions : 5,8 x 2,3 cm (2,30 x 0,9')2 5,8 x 2,3 cm (2,30 x 0,9')
2 trous de fixation :
compatible avec les vis 4-40
21 sorties GPIO
Tous les connecteurs ont une capacité de multiplexage complète par logiciel
Interfaces SPI, I²C et UART mappées par défaut sur les connecteurs étiquetés.
13 GPIO (6 étiquetés comme analogiques, 7 étiquetés comme GPIO)
Toutes les fonctions sont soit GPIO, soit analogiques.
Convertisseur numérique-analogique intégré (DAC)
Connecteur USB-C
Connecteur de batterie LiPo JST à 2 broches pour une batterie LiPo (non incluse)
Connecteur JST Qwiic 4 broches
Chargeur LiPo monocellulaire MC73831
Taux de charge configurable (500 mA par défaut, 100 mA en alternance)
MAX17048 Jauge de carburant LiPo monocellulaire
Emplacement pour carte µSD
Faible consommation d'énergie (15 µA lorsque le MGM240P est en mode faible consommation)
LED:
PWR - LED rouge d'alimentation
CHG - Voyant jaune d'état de charge de la batterie
STAT - Voyant d'état bleu
Bouton de réinitialisation :
Bouton-poussoir physique
Le signal de réinitialisation peut être lié à A0 pour permettre une utilisation en tant que périphérique.
Téléchargements
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Datasheet (MGM240P)
Fritzing Part
Thing+ Comparison Guide
Qwiic Info Page
GitHub Hardware Repo
Cette carte support combine un écran TFT 2.4', six DEL adressables, un régulateur de tension intégré, un connecteur IO à 6 broches et une fente microSD avec la fente de connecteur M.2 broches afin qu’elle puisse être utilisée avec les cartes de processeur compatibles dans notre écosystème MicroMod. Nous avons également installé sur cette carte porteuse l’ATtiny84 d’Atmel avec 8Ko de flash programmable. Ce petit gars est préprogrammé pour communiquer avec le processeur sur I2C pour lire les boutons pressés. Caractéristiques : Connecteur MicroMod M.2 240 x 320 pixels, écran TFT 2,4' 6 DEL APA102 adressables Buzzer magnétique Connecteur USB-C Régulateur de tension 3,3 V 1 A Connecteur Qwiic Boutons de démarrage/réinitialisation Circuit de batterie et de charge de secours du CCF microSD Phillips #0 M2.5 x 3 mm vis incluse
Maker Line est un capteur de ligne doté d'un réseau de 5 capteurs IR capable de suivre des lignes de 13 mm à 30 mm de largeur.
L'étalonnage du capteur a également été simplifié. Il n'est pas nécessaire d'ajuster le potentiomètre pour chaque capteur IR. Il vous suffit d'appuyer sur le bouton de calibrage pendant 2 secondes pour accéder au mode de calibrage. Ensuite, vous devez faire glisser les capteurs sur la ligne, appuyer à nouveau sur le bouton et vous êtes prêt à partir.
Les données d'étalonnage sont stockées dans l'EEPROM et restent intactes même lorsque le capteur est éteint. L'étalonnage ne doit donc être effectué qu'une seule fois, sauf si la hauteur du capteur, la couleur de la ligne ou la couleur de fond ont changé.
Maker Line prend également en charge deux sorties : 5 sorties numériques pour l'état de chaque capteur indépendamment, ce qui est similaire au capteur IR classique, mais vous bénéficiez d'un étalonnage facile, et également une sortie analogique, où la tension représente la position de la ligne. La sortie analogique offre également une résolution plus élevée par rapport aux sorties numériques séparées. Ceci est particulièrement utile lorsqu’une grande précision est requise lors de la construction d’un robot suiveur de ligne avec contrôle PID.
Caractéristiques
Tension de fonctionnement : compatible DC 3,3 V et 5 V (avec protection contre l'inversion de polarité)
Largeur de trait recommandée : 13 mm à 30 mm
Couleur de ligne sélectionnable (claire ou foncée)
Distance du capteur (hauteur) : 4 mm à 40 mm (Vcc = 5 V, ligne noire sur surface blanche)
Taux de rafraîchissement du capteur : 200 Hz
Processus d'étalonnage facile
Types de sortie double : 5 sorties numériques représentent chaque état du capteur IR, 1 sortie analogique représente la position de la ligne.
Prend en charge une large gamme de contrôleurs, tels que Arduino, Raspberry Pi, etc.
Téléchargements
Fiche de données
Tutoriel : Construire un robot de suivi de ligne bon marché
Découvrez une créativité sans limite avec le kit de capteurs universels, conçu pour Raspberry Pi, Pico W, Arduino et ESP32. Ce kit polyvalent est compatible avec les plateformes de développement les plus populaires, notamment Arduino Uno R4 Minima/WiFi, Uno R3, Mega 2560, Raspberry Pi 5, 4, 3B+, 3B, Zero, Pico W et ESP32.
Avec plus de 35 capteurs, actionneurs et écrans, il est idéal pour des projets allant de la surveillance environnementale et de la domotique à la robotique et aux jeux interactifs. Des tutoriels pas à pas en C/C++, Python et MicroPython guident les créateurs débutants comme expérimentés à travers 169 projets passionnants.
Caractéristiques
Large compatibilité : Prise en charge complète d'Arduino (Uno R3, Uno R4 Minima/WiFi, Mega 2560), Raspberry Pi (5, 4, 3B+, 3B, Zero, Pico W) et ESP32, offrant une grande flexibilité sur de nombreuses plateformes de développement. Instructions pour la construction de 169 projets incluses.
Composants complets : Plus de 35 capteurs, actionneurs et modules d'affichage adaptés à divers projets tels que la surveillance environnementale, la domotique, la robotique et les contrôleurs de jeux interactifs.
Tutoriels détaillés : Des tutoriels clairs et détaillés couvrent Arduino, Raspberry Pi, Pico W, ESP32 et chaque composant inclus. Des tutoriels sont disponibles en C/C++, Python et MicroPython, s'adressant aussi bien aux débutants qu'aux créateurs expérimentés.
Adapté à tous les niveaux : Propose des projets structurés conçus pour guider les utilisateurs de manière fluide, du niveau débutant au niveau avancé en électronique et en programmation, améliorant ainsi leur créativité et leur expertise technique.
Inclus
Plaque d'expérimentation
Module bouton
Module capacitif d'humidité du sol
Module capteur de flamme
Module capteur de gaz/fumée (MQ2)
Gyroscope et Module accéléromètre (MPU6050)
Module capteur à effet Hall
Module capteur de vitesse infrarouge
Module capteur d'évitement d'obstacles IR
Module joystick
Module convertisseur ADC/DAC PCF8591
Module photorésistance
Module de mouvement PIR (HC-SR501)
Module potentiomètre
Module oxymètre de pouls et capteur de fréquence cardiaque (MAX30102)
Module de détection de gouttes de pluie
Module horloge temps réel (DS1302)
Module codeur rotatif
Module capteur de température (DS18B20)
Module capteur de température et d'humidité (DHT11)
Température, humidité et Capteur de pression (BMP280)
Capteur de distance Micro-LIDAR à temps de vol (VL53L0X)
Module de capteur tactile
Module de capteur à ultrasons (HC-SR04)
Module de capteur de vibrations (SW-420)
Module de capteur de niveau d'eau
I²C LCD 1602
Module d'affichage OLED (SSD1306)
Module LED RVB
Module de feux de signalisation
Module relais 5 V
Pompe centrifuge
Module de commande de moteur L9110
Module d'avertisseur passif
Servomoteur (SG90)
TT Moteur
Module ESP8266
Module Bluetooth JDY-31
Module d'alimentation
Documentation
Tutoriel en ligne
Un écran IdO de 2,7 pouces à faible consommation et à source ouverte, alimenté par un module ESP32-S2 et doté de la technologie Memory-in-Pixel (MiP) de SHARP. Le Newt est un écran mural alimenté par piles, toujours allumé, qui peut aller en ligne pour récupérer la météo, les calendriers, les résultats sportifs, les listes de choses à faire, les citations... vraiment tout ce qui se trouve sur Internet ! Il utilise un microcontrôleur ESP32-S2 que vous pouvez programmer avec Arduino, CircuitPython, MicroPython ou ESP-IDF. Il est parfait pour les makers : La technologie Memory-in-Pixel (MiP, mémoire dans les pixels) de Sharp évite les temps de rafraîchissement lents associés aux écrans E-Ink. Une horloge en temps réel a été ajoutée pour prendre en charge les minuteries et les alarmes. Le Newt a été conçu en tenant compte du fonctionnement sur batterie ; chaque composant a été choisi pour sa capacité à fonctionner à faible puissance. Le Newt a été conçu pour fonctionner « sans fil », ce qui signifie qu'il peut être installé dans des endroits où un cordon d'alimentation ne serait pas pratique, par exemple un mur, un réfrigérateur, un miroir ou un tableau effaçable à sec. Avec le support optionnel, les bureaux, les étagères et les tables de nuit sont également de bonnes options. Il est open source, et tous les fichiers et bibliothèques de conception sont disponibles pour examen, utilisation et modification. Toutefois, cela n'est pas obligatoire. Chacun est livré avec un logiciel fonctionnel comportant les fonctions suivantes : Détails de la météo actuelle Prévisions météorologiques horaires et quotidiennes Alarme Minuteur Citations inspirantes Prévision de la qualité de l’air Calendrier des habitudes Minuteur Pomodoro Carte de stratégie oblique Pour l’utiliser, il suffit de suivre les instructions pour le connecter au Wi-Fi. Aucun téléchargement d'application n'est nécessaire. Spécifications Affichage LCD à mémoire vive Taille de l’écran 2,7 pouces Résolution 240 x 400 Courant de veille 30 μA Taux de rafraichissement Rafraîchissement périodique de l'écran requis Non Boutons d’entrée 10 boutons capacitifs, 1 bouton-poussoir RTC inclus Oui Haut-parleurs inclus Oui Entrée d’alimentation USB Type-C Batterie incluse Non Languages de programmation Arduino, CircuitPython, ESP IDF, MicroPython Dimensions 91 x 61 x 9 mm Microcontrôleur Module expressif ESP32-S2-WROVER avec 4 Mo de flash et 2 Mo de PSRAM Compatible Wi-Fi Supporte Arduino, MicroPython, CircuitPython, et ESP-IDF Courant de veille profonde aussi faible que 25 μA Affichage Mémoire en pixels LCD 2,7 pouces, 240 x 400 pixels Capable de fournir un contenu à haut contraste, haute résolution et faible latence avec une consommation d’énergie ultra-faible Le mode réfléchissant exploite la lumière ambiante pour éliminer le besoin d’un rétroéclairage Chronométrage, minuteries et alarmes Horloge temps reel (RTC) Micro Crystal RV-3028-C7 Optimisé pour une consommation extrêmement faible (45 μA) Capable de gérer simultanément une minuterie périodique, un compte à rebours et une alarme Interruption matérielle pour les minuteries et les alarmes 43 octets de mémoire utilisateur non volatile, 2 octets de RAM utilisateur Compteur de temps UNIX séparé Audio Haut-parleur/ronfleur avec mini amplificateur classe D sur la sortie A0 du CNA, pouvant jouer des tonalités ou des clips audio lo-fi. Entrée utilisateur Interrupteur d’alimentation Deux boutons tactiles programmables pour réinitialiser et démarrer 10 pavés tactiles capacitifs Alimentation Newt est conçu pour fonctionner pendant un à deux mois entre les charges en utilisant une batterie lipo de 500 mAh. Cette durée varie (une utilisation intensive du Wi-Fi, en particulier, déchargera plus rapidement la batterie). Connecteur USB de type C pour la programmation, l'alimentation et la charge Régulateur de tension à mode de fonctionnement vert (TOREX XC6220) qui peut sortir 1 A de courant et fonctionner à partir de 8 μA Connecteur JST pour une batterie Lithium-Ion Chargeur de batterie (MCP73831) Indicateur de batterie faible (courant de repos de 1 μA) Logiciel Le matériel Newt est compatible avec les bibliothèques open source Arduino pour ESP32-S2, Adafruit GFX (polices de caractères), Adafruit Sharp Memory Display, et RTC RV-3028-C7 (RTC) Les bibliothèques Arduino et les exemples de programmation sont disponibles dans le dépôt GitHub du fabricant Les bibliothèques CircuitPython et l'enregistrement sont sur la feuille de route, incluant une bibliothèque CircuitPython pour l'horloge en temps réel RV-3028 Inclus dans le colis Phambili Newt – entièrement assemblé avec firmware préchargé Support de bureau découpé au laser Pieds à mini-aimant La visserie nécessaire Support et documentation Instructions complètes d’utilisation (En anglais) GitHub: bibliothèque et base de code Arduino (En anglais) GitHub: schémas de la carte (En anglais) Vidéos de prototypes ou de démonstrations (build tracked on Hackaday. En anglais)
La carte de développement mikroBUS SparkFun RP2040 est une plate-forme hautes performances à faible coût avec des interfaces numériques flexibles dotées du microcontrôleur RP2040 de la Raspberry Pi Foundation. Outre la disposition des broches Thing Plus ou Feather PTH, la carte comprend également un emplacement pour carte microSD, une mémoire flash de 16 Mo (128 Mbits), un connecteur de batterie monocellulaire JST (avec un circuit de charge et un capteur de jauge de carburant), une LED RVB WS2812 adressable. , broches JTAG PTH, quatre trous de montage (vis 4-40), nos connecteurs Qwiic signature et une prise mikroBUS. La norme mikroBUS a été développée par MikroElektronika. Semblable aux interfaces Qwiic et MicroMod, la prise mikroBUS fournit une connexion standardisée pour les cartes Click supplémentaires à connecter à une carte de développement et est composée d'une paire d'embases femelles à 8 broches avec une configuration de broches standardisée. Les broches se composent de trois groupes de broches de communication (SPI, UART et I²C), de six broches supplémentaires (PWM, interruption, entrée analogique, réinitialisation et sélection de puce) et de deux groupes d'alimentation (3,3 V et 5 V).
Le RP2040 est pris en charge avec les environnements de développement multiplateformes C/C++ et MicroPython, y compris un accès facile au débogage d'exécution. Il intègre des routines de démarrage UF2 et de virgule flottante dans la puce. Bien que la puce dispose d'une grande quantité de RAM interne, la carte comprend 16 Mo supplémentaires de mémoire flash QSPI externe pour stocker le code du programme. Le RP2040 contient deux processeurs ARM Cortex-M0+ (jusqu'à 133 MHz) et propose :
264 Ko de SRAM intégrée dans six banques
6 IO dédiées pour SPI Flash (supportant XIP) 30 GPIO multifonctions :
Matériel dédié aux périphériques couramment utilisés
E/S programmables pour une prise en charge étendue des périphériques
Quatre canaux ADC 12 bits avec capteur de température interne (jusqu'à 0,5 MSa/s)
Fonctionnalité hôte/périphérique USB 1.1
Caractéristiques (Carte de développement SparkFun RP2040 mikroBUS)
Microcontrôleur RP2040 de la Raspberry Pi Foundation 18 broches GPIO multifonctions
Quatre canaux ADC 12 bits disponibles avec capteur de température interne (500 kSa/s)
Jusqu'à huit PWM à 2 canaux
Jusqu'à deux UART
Jusqu'à deux bus I²C
Jusqu'à deux bus SPI
Disposition des broches Thing Plus (ou Feather) :
28 broches PTH
Connecteur USB-C : Fonctionnalité hôte/périphérique USB 1.1
Connecteur JST 2 broches pour une batterie LiPo (non incluse) : Circuit de charge 500 mA
Connecteur JST Qwiic à 4 broches
LED :
PWR - Indicateur d'alimentation rouge 3,3 V
CHG - Indicateur jaune de charge de la batterie
25 - LED bleue d'état/test ( GPIO 25 )
WS2812 - LED RVB adressable ( GPIO 08 )
Boutons:
Boot
Reset
Broches JTAG PTH
Mémoire flash QSPI de 16 Mo
Emplacement pour carte µSD
Prise mikroBUS
Dimensions : 3,7' x 1,2'
Quatre trous de montage : Compatible vis 4-40
Téléchargements
Schématique
Fichiers Aigle
Dimensions de la carte
Guide de connexion
Page d'informations Qwiic
Référentiel matériel GitHub
Le MDP-M01 est un module de contrôle d'affichage équipé d'un écran TFT de 2,8 pouces. L'écran peut être tourné à 90 degrés, ce qui permet aux utilisateurs de visualiser les données et les formes d'onde. Le MDP-M01 peut réaliser un affichage et un contrôle en ligne avec les mini-modules d'alimentation numérique MDP-P906 et d'autres modules du système MDP par le biais d'une communication sans fil de 2,4 GHz, et peut contrôler jusqu'à 6 sous-modules en même temps. Specifications Taille de l’écran 2,8' TFT Résolution de l’écran 240 x 320 Alimentation Entrée d'alimentation micro USB, ou prise d'alimentation du sous-module via un câble d'alimentation dédié Entrée DC 5 V/0,3 A Autres fonctions Peut contrôler jusqu'à 6 sous-modulesMise à jour du logiciel par micro USB Dimensions 107 x 66 x 13,6 mm Poids 133 g Inclus 1x MDP-M01 Moniteur numérique intelligent 1x Cable (2.5 mm jack to Micro USB) Téléchargements User Manual v3.4 Firmware v1.32
La carte support SparkFun MicroMod mikroBUS tire parti des écosystèmes MicroMod, Qwiic et mikroBUS, ce qui facilite le prototypage rapide avec chacun d'eux, combinés. Le socket MicroMod M.2 et l'en-tête mikroBUS à 8 broches offrent aux utilisateurs la liberté d'expérimenter respectivement avec n'importe quelle carte processeur de l'écosystème MicroMod et n'importe quelle carte Click de l'écosystème mikroBUS. Cette carte dispose également de deux connecteurs Qwiic pour intégrer de manière transparente des centaines de capteurs et accessoires Qwiic dans votre projet. La prise mikroBUS comprend une paire de connecteurs femelles à 8 broches avec une configuration de broches standardisée. Les broches se composent de trois groupes de broches de communication (SPI, UART et I²C), de six broches supplémentaires (PWM, interruption, entrée analogique, réinitialisation et sélection de puce) et de deux groupes d'alimentation (3,3 V et 5 V).
Bien qu'un connecteur USB-C moderne facilite la programmation, la carte porteuse est également équipée d'un circuit intégré de charge lithium-ion/lithium-polymère monocellulaire MCP73831 afin que vous puissiez charger une batterie LiPo monocellulaire connectée. Le circuit intégré de charge est alimenté par la connexion USB et peut fournir jusqu'à 450 mA pour charger une batterie connectée.
Caractéristiques
Connecteur M.2 MicroMod (carte processeur)
Connecteur USB-C
Régulateur de tension 3,3 V 1 A
2x connecteurs Qwiic
Prise mikroBUS
Boutons de démarrage/réinitialisation
Circuit de recharge
Broches JTAG/SWD PTH
Téléchargements
Schématique
Fichiers Aigle
Dimensions de la carte
Guide de connexion
Premiers pas avec Necto Studio
Norme microBUS
Page d'informations Qwiic
Dépôt de matériel GitHub
Un adaptateur pour connecter un servo-mètre avec des pinces crocodiles.
Il s'agit d'une petite pince pratique pour connecter un servomoteur avec une douille de 5,4 mm à l'aide de pinces crocodiles. Elle est idéale pour une utilisation avec des cartes comme le BBC micro:bit et le Circuit Playground Express ou Gemma d'Adafruit.
Largeur : 27 mm
Hauteur : 35 mm
Téléchargements
Fiche de données
Waveshare DVK600 est une carte mère FPGA CPLD dotée de connecteurs d'extension pour connecter la carte principale FPGA CPLD et les cartes accessoires. Le DVK600 offre un moyen simple de configurer le système de développement FPGA CPLD.
Caractéristiques
Connecteur de carte centrale FPGA CPLD : pour connecter facilement des cartes centrales intégrant une puce FPGA CPLD intégrée
Interface 8I/Os_1 , pour connecter des cartes/modules accessoires
Interface 8I/Os_2 , pour connecter des cartes/modules accessoires
Interface 16I/Os_1 , pour connecter des cartes/modules accessoires
Interface 16I/Os_2 , pour connecter des cartes/modules accessoires
Interface 32I/Os_1 , pour connecter des cartes/modules accessoires
Interface 32I/Os_2 , pour connecter des cartes/modules accessoires
Interface 32I/Os_3 , pour connecter des cartes/modules accessoires
Interface SDRAM
pour connecter la carte accessoire SDRAM
fonctionne également comme connecteurs d'extension de broches FPGA CPLD
Interface LCD , pour connecter LCD22, LCD12864, LCD1602
Interface ONE-WIRE : se connecte facilement aux appareils ONE-WIRE (boîtier TO-92), tels que le capteur de température (DS18B20), le numéro d'enregistrement électronique (DS2401), etc.
Prise 5 V CC
Joystick : cinq positions
Avertisseur sonore
Potentiomètre : pour le réglage du rétroéclairage LCD22 ou le réglage du contraste LCD12864, LCD1602
Interrupteur
Cavalier du buzzer
Cavalier UN FIL
Cavalier du joystick
Téléchargements
Schémas
This educational soldering kit is suitable for all kinds of applications such as model making and works with a 9 V battery (not included). You can control the flashing speed with two potentiometers.
Downloads
Manual
NVIDIA souhaite améliorer l'accessibilité et l'innovation dans le Deep Learning et a donc développé un cours en ligne gratuit et autodidacte du Deep Learning Institute (DLI) : « Getting Started on AI with Jetson Nano ». L'objectif du cours est de développer des compétences de base afin que chacun puisse faire preuve de créativité avec le Jetson Developer Kit. Veuillez noter que ce kit est destiné à ceux qui possèdent déjà un kit de développement Jetson Nano et souhaitent participer au cours DLI. Un Jetson Nano n’est pas inclus dans ce kit. Ce kit contient tout ce dont vous avez besoin pour démarrer avec l'IA avec Jetson Nano (sauf un Jetson Nano, bien sûr), et vous apprendrez à
Configurez votre Jetson Nano et votre caméra
Collecte des données d'image pour les modèles de classification
Annote les données d'image pour les modèles de régression
Un réseau neutre s'entraîne sur vos données pour créer vos propres modèles
Exécutez des inférences sur le Jetson Nano avec les modèles que vous créez
Le NVIDIA Deep Learning Institute propose une formation pratique en IA et en calcul accéléré pour résoudre des problèmes du monde réel. Les développeurs, les data scientists, les chercheurs et les étudiants peuvent acquérir une expérience pratique des GPU cloud et obtenir un certificat de compétence pour soutenir leur croissance professionnelle. Ils proposent des formations autonomes, des formations en ligne pour les individus, des ateliers dirigés par des instructeurs pour les équipes et des supports de cours téléchargeables pour les professeurs universitaires.
Inclus
Carte MicroSD de 32 Go
Webcam Logitech C270
Alimentation 5 V, 4 A
Câble USB - microB (Réversible)
Cavalier à 2 broches
Remarque : le kit de développement Jetson Nano n'est pas inclus.
Le kit de démarrage pour Jetson Nano est l'un des meilleurs kits permettant aux débutants de démarrer avec Jetson Nano. Ce kit comprend une carte MicroSD de 32 Go, un adaptateur 20 W, un cavalier à 2 broches, un appareil photo et un câble micro-USB.
Caractéristiques
Carte MicroSD hautes performances de 32 Go
Alimentation 5 V/4 A avec connecteur cylindrique CC de 2,1 mm
Cavalier à 2 broches
Module caméra Raspberry Pi V2
Câble USB Micro-B vers Type-A avec DATA activé
La carte Portenta Cat. M1/NB IoT GNSS Shield vous permet d'améliorer les fonctionnalités de connexions de vos applications Portenta H7. Elle utilise un module sans fil Cinterion TX62 de Thales, conçu pour les applications IoT très efficaces et à faible consommation, afin d'offrir une bande passante et des performances optimisées. La Portenta Cat. M1/NB IoT GNSS Shield s'associe à la forte puissance de calcul de la Portenta H7 pour permettre le développement d'applications de localisation de biens et de surveillance à distance dans les environnements industriels, ainsi que dans l'agriculture, les services publics et les villes intelligentes. La carte offre une connectivité cellulaire aux réseaux Cat. M1 et NB-IoT, avec la possibilité d'utiliser la technologie eSIM. Suivez facilement vos objets de valeur dans toute la ville ou dans le monde entier en choisissant votre GPS, GLONASS, Galileo ou BeiDou. Caractéristiques Changez les capacités de connexion sans changer la carte. Ajoutez NB-IoT, CAT. M1 et le positionnement pour n’importe quel produit Portenta. Possibilité de créer un petit routeur multiprotocole (WiFi - BT + NB-IoT/CAT. M1). Réduisez considérablement les besoins en bande passante de communication dans les applications IoT. Module basse consommation. Compatible également avec les cartes MKR. Surveillance à distance Les entreprises industrielles et agricoles peuvent tirer parti du Portenta Cat. M1/NB IoT GNSS Shield pour surveiller à distance des détecteurs de gaz, des capteurs optiques, des systèmes d'alarme pour machines, des pièges à insectes biologiques, etc. Les fournisseurs de technologies, qui proposent des solutions pour les villes intelligentes, peuvent combiner la puissance et la fiabilité de la Portenta H7 avec la carte Portenta Cat. M1/NB IoT GNSS, afin de connecter les données et d'automatiser les actions pour une utilisation réellement optimisée des ressources et une meilleure expérience utilisateur. Surveillance des biens Ajoutez des capacités de surveillance à n'importe quel bien en combinant les performances et les fonctions d'informatique périphérique des cartes de la famille Portenta. La carte Portenta Cat. M1/NB IoT GNSS Shield est idéale pour surveiller les biens de valeur ainsi que les machines et les équipements industriels. Caractéristiques Connectivité Module sans-fil Cinterion TX62; NB-IoT - LTE CAT.M1; 3GPP Rel.14 Protocole compatible LTE Cat. M1/NB1/NB2; Bandes UMTS: 1 / 2 / 3 / 4 / 5 / 8 / 12(17) / 13 / 18 / 19 / 20 / 25 / 26 / 27 / 28 / 66 / 71 / 85; LTE Cat.M1 DL: max. 300 kbps, UL: max. 1.1 Mbps; LTE Cat.NB1 DL: max. 27 kbps, UL: max. 63 kbps; LTE Cat.NB2 DL: max. 124 kbps, UL: max. 158 kbps Service de messagerie(SMS) Mode texte point à point avec terminaison mobile (MT) et origine mobile (MO) ; mode PDU (Protocol Data Unit). Aide à la localisation Compatible GNSS (GPS/BeiDou/Galileo/GLONASS) Autres Accès intégré aux piles TCP/IP IPv4 et IPv6 ; services Internet : Serveur/client TCP, client UDP, DNS, Ping, client HTTP, client FTP, client MQTT Connexion sécurisée avec TLS/DTLS Démarrage sécurisé. Dimensions 66 x 25,4 mm Température de fonctionnement De -40° C à +85° C (de -104° F à 185°F) Téléchargements · Fiche technique · Schémas
Vous trouverez ici toutes sortes de pièces, composants et accessoires dont vous avez besoin dans différents projets, depuis les simples fils, capteurs et écrans jusqu'aux modules et kits déjà pré-assemblés.