NOUVEAU
-
Generic Caméra endoscopique portative avec écran HD de 2,4 pouces
Cette caméra endoscopique est dotée d'un micro-objectif de 8 mm avec un angle de vision de 170° et de 6 lumières LED réglables pour des visuels clairs et haute définition. Sa conception ergonomique permet une utilisation à une seule main, et le câble semi-flexible de 2 m permet de naviguer facilement dans les espaces étroits. Avec l'étanchéité IP67, la caméra est idéale pour les environnements humides, tandis que le corps mat antidérapant assure confort et facilité d'utilisation. Il fonctionne sans avoir besoin de Wi-Fi, de téléphone ou d'applications, ce qui en fait un outil pratique pour les tâches industrielles telles que la plomberie, la réparation automobile et l'entretien de la maison. Spécifications Écran 2,4 pouces Résolution 1920 x 1080 Taille de l'objectif 8 mm Longueur focale 3-10 cm Angle de vision horizontal 170° Format des images JPEG Lumières 6 LED (réglables) Interface USB-C Batterie Batterie au lithium intégrée de 2600 mAh Autonomie de la batterie 4 à 5 heures Longueur du câble 2 m Inclus Caméra endoscopique avec écran LCD 2,4 pouces Câble USB Manuel
-
Generic ESP32 Cheap Yellow Display Board
Cette carte de développement (également connue sous le nom de « Cheap Yellow Display ») est alimentée par l'ESP-WROOM-32, un MCU double cœur avec des capacités Wi-Fi et Bluetooth intégrées. Il fonctionne à une fréquence principale allant jusqu'à 240 MHz, avec 520 Ko de SRAM, 448 Ko de ROM et une mémoire Flash de 4 Mo. La carte dispose d'un écran de 2,8 pouces avec une résolution de 240 x 320 et un toucher résistif. De plus, la carte comprend un circuit de contrôle du rétroéclairage, un circuit de contrôle tactile, un circuit de commande de haut-parleur, un circuit photosensible et un circuit de contrôle LED RVB. Il fournit également un emplacement pour carte TF, une interface série, une interface de capteur de température et d'humidité DHT11 et des ports IO supplémentaires. Le module prend en charge le développement dans Arduino IDE, ESP-IDE, MicroPython et Mixly. Applications Transmission d'images pour les appareils Smart Home Surveillance sans fil Agriculture intelligente Reconnaissance sans fil QR Signal du système de positionnement sans fil Et d'autres applications IoT Spécifications Microcontrôleur ESP-WROOM-32 (MCU double cœur avec Wi-Fi et Bluetooth intégrés) Fréquence Jusqu'à 240 MHz (la puissance de calcul peut atteindre 600 DMIPS) SRAM 520 Ko ROM 448 Ko Flash 4 Mo Tension de fonctionnement 5 V Consommation électrique env. 115 mA Écran Écran TFT couleur de 2,8 pouces (240 x 320) Toucher Toucher résistif Puce du pilote ILI9341 Dimensions 50 x 86 mm Poids 50 g Inclus 1x Carte de développement ESP32 avec écran de 2,8 pouces et boîtier en acrylique 1x Stylet tactile 1x Câble de connexion 1x Câble USB Téléchargements GitHub
€ 24,95
Membres € 22,46
-
Heltec Automation Heltec HT-M00 Passerelle LoRa à 2 canaux (EU868)
Le HT-M00 est une passerelle double canal spécialement conçue pour répondre aux applications LoRa de la famille intelligente qui fonctionnent avec moins de 30 nœuds LoRa. La passerelle a été construite autour de deux puces SX1276 pilotées par ESP32. Pour permettre la surveillance du facteur d'étalement SF7~SF12 de 125 kHz, un mélangeur logiciel a été développé, communément appelé programme de simulation en bande de base. Le mélangeur logiciel est un composant essentiel qui permet à la passerelle HT-M00 de fonctionner avec une grande efficacité. Il est conçu pour simuler des signaux en bande de base, qui sont ensuite mélangés aux signaux radiofréquence pour produire le résultat souhaité. Le mélangeur logiciel a été développé avec beaucoup de soin et de précision, et a été soumis à des tests rigoureux pour garantir qu'il est capable de fournir des résultats précis et fiables. Caractéristiques ESP32 + SX1276 Émule les démodulateurs LoRa Le facteur d'étalement du spectre adaptatif automatique, SF7 à SF12 pour chaque canal, est facultatif Sortie maximale : 18 ±1 dBm Prise en charge du protocole LoRaWAN Classe A et Classe C Spécifications MCU ESP32-D0WDQ6 Jeu de puces LoRa SX1276 Bande LoRa 863~870 MHz Tension d'alimentation 5 V Sensibilité de réception -110 dBm à 300 bps Interface USB-C Max. Puissance d'émission 17dB ±1dB Température de fonctionnement −20~70°C Dimensions 30 x 76 x 14 mm Inclus 1x HT-M00 Passerelle LoRa à 2 canaux 1x Support mural 1x Câble USB-C Downloads Manual Software Documentation
€ 74,95€ 54,95
Membres identique
-
Heltec Automation CubeCell HTCC-AB02 LoRa Development Board (EU868)
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications. Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels. The HTCC-AB02 is a developer-friendly board, ideal for quickly testing and validating communication solutions. Features Arduino compatible Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262 LoRaWAN 1.0.2 support Ultra low power design, 3.5 uA in deep sleep Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching) Good impendence matching and long communication distance Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information Specifications Main Chip ASR6502 (48 MHz ARM Cortex-M0+ MCU) LoRa Chipset SX1262 Frequency 863~870 MHz Max. TX Power 22 ±1 dBm Max. Receiving Sensitivity −135 dBm Hardware Resource 2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO Memory 128 Kb FLASH16 Kb SRAM Power consumption Deep sleep 3.5 uA Interfaces 1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header) Battery 3.7 V lithium battery (power supply and charging) Solar Energy VS pin can be connected to 5.5~7 V solar panel USB to Serial Chip CP2102 Display 0.96" OLED (128 x 64) Operating temperature −20~70°C Dimensions 51.9 x 25 x 8 mm Included 1x CubeCell HTCC-AB02 Development Board 1x Antenna 1x 2x SH1.25 battery connector Downloads Datasheet Schematic Quick start GitHub
-
Heltec Automation CubeCell HTCC-AB02S LoRa Development Board with GPS (EU868)
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications. Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels. The HTCC-AB02S is a developer-friendly board with an integrated AIR530Z GPS module, ideal for quickly testing and validating communication solutions. Features Arduino compatible Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262 LoRaWAN 1.0.2 support Ultra low power design, 21 uA in deep sleep Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching) Good impendence matching and long communication distance Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information Using Air530 GPS module with GPS/Beidou Dual-mode position system support Specifications Main Chip ASR6502 (48 MHz ARM Cortex-M0+ MCU) LoRa Chipset SX1262 Frequency 863~870 MHz Max. TX Power 22 ±1 dBm Max. Receiving Sensitivity −135 dBm Hardware Resource 2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO Memory 128 Kb FLASH16 Kb SRAM Power consumption Deep sleep 21 uA Interfaces 1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header) Battery 3.7 V lithium battery (power supply and charging) Solar Energy VS pin can be connected to 5.5~7 V solar panel USB to Serial Chip CP2102 Display 0.96" OLED (128 x 64) Operating temperature −20~70°C Dimensions 55.9 x 27.9 x 9.5 mm Included 1x CubeCell HTCC-AB02S Development Board 1x Antenna 1x 2x SH1.25 battery connector Downloads Datasheet Schematic GPS module (Manual) Quick start GitHub
€ 49,95€ 34,95
Membres identique
-
Heltec Automation CubeCell HTCC-AB01 (V2) LoRa Development Board (EU868)
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications. Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels. The HTCC-AB01 (V2) is an upgraded version of the HTCC-AB01 board. Features Arduino compatible Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex-M0+ Core) and SX1262 LoRaWAN 1.0.2 support Ultra low power design, 3.5 uA in deep sleep Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching) Good impendence matching and long communication distance. Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing Specifications Main Chip ASR6502 (48 MHz ARM Cortex-M0+ MCU) LoRa Chipset SX1262 Frequency 863~870 MHz Max. TX Power 21 ±1 dBm Max. Receiving Sensitivity −134 dBm Hardware Resource 1x UART1x SPI1x I²C1x SWD1x 12-bit ADC input8-channel DMA engine8x GPIO2x PWM Memory 128 Kb FLASH16 Kb SRAM Power consumption Deep Sleep 3.5 uA Interfaces 1x USB-C1x LoRa Antenna (IPEX 1.0)SH1.25; 11x 2x 2.54 Pin header1x (2x 2.54 Pin header) Solar Energy VS pin can be connected to 5.5~7 V solar panel Battery 3.7 V Lithium battery (power supply and charging) Operating temperature −20~70°C Dimensions 40.6 x 22.9 x 7.6 mm Included 1x CubeCell HTCC-AB01 (V2) Development Board 1x Antenna 1x 2x SH1.25 battery connector Downloads Datasheet Schematic Quick start GitHub
-
Generic Monoculaire de vision nocturne numérique
Le monoculaire de vision nocturne numérique est un appareil puissant qui combine une technologie avancée avec un confort convivial. Doté de capacités photo et vidéo haute résolution, d'une luminosité infrarouge réglable et d'un design compact, il est parfaitement adapté à une variété d'activités de plein air telles que le camping, la pêche et l'observation de la faune. Spécifications Grossissement optique 6x Zoom numérique 8x Puissance d'éclairage IR/longueur d'onde 3 W/850 nm Diamètre de la lentille 25 mm Résolution des photos 40MP, 30MP, 25 MP, 20 MP, 10 MP, 8 MP, 5 MP, 3 MP Format des photos JPG Résolution vidéo 2,5k, 1080p, 720p Format vidéo AVI Champ de vision 10° Capteur d'image CMOS Enregistrement pendant la journée Couleur Enregistrement de nuit Noir et Blanc Afficher Écran IPS de 2 pouces (320x240) Batterie Batterie au lithium 18650 intégrée (2500 mAh) Port de chargement USB-C Température de fonctionnement −30°C à +55°C Dimensions 170 x 75 x 65 mm Poids 245 g Inclus 1x Monoculaire de vision nocturne 1x Lecteur de carte 1x Sac de rangement 1x Dragonne 1x Chiffon de nettoyage pour lentilles 1x Câble USB 1x Manuel
-
Elektor Labs Synthétiseur Surf Elektor
Générateur de sons océaniques Le synthétiseur Surf Elektor imite de manière convaincante le bruit des vagues déferlantes. Il est basé sur un circuit publié dans l'édition d'été d'Elektor de 1972 pour célébrer les Jeux olympiques d'été organisés cette année-là à Munich, en Allemagne. Le Surf Synthesizer peut être considéré comme un véritable synthétiseur de musique analogique, car il suit le paradigme de la synthèse sonore soustractive contrôlée en tension, rendu populaire par Robert Moog et ses amis (vous vous souvenez de l'Elektor Formant ?). Au lieu d'un VCO (oscillateur contrôlé par tension), il dispose d'un générateur de bruit comme source sonore. Un VCF (filtre contrôlé en tension) et un VCA (amplificateur contrôlé en tension) modulés par trois LFO (oscillateurs basse fréquence) façonnent le son des ondes. Le synthétiseur Surf se présente sous la forme d'un kit facile à construire en utilisant uniquement des composants traversants. Le kit contient toutes les pièces nécessaires, y compris un élégant support en bois. Montez d’abord toutes les pièces sur la face avant (montrant le schéma). Terminez en montant le support de batterie à l'arrière (montrant la description du circuit). L'utilisation d'écouteurs (non inclus) est recommandée pour obtenir la meilleure qualité sonore. Une pile 9 V (PP3) (non incluse) alimente le Surf Synthesizer. Liste des composants Résistances (5%, 0,25 W) R30 = 100 Ω R1 = 470 Ω R39 = 560 Ω R36 = 680 Ω R26 = 1 kΩ R35 = 2.2 kΩ R18 = 4.7 kΩ R2, R5, R6, R9, R10, R13 = 6.8 kΩ R16, R37, R38 = 10 kΩ R14, R24 = 22 kΩ R15 = 33 kΩ R7, R20 = 39 kΩ R11, R19, R21, R28 = 47 kΩ R4, R12, R17, R23, R25, R31, R32, R33, R34 = 68 kΩ R22 = 100 kΩ R8 = 180 kΩ R3 = 270 kΩ R29 = 680 kΩ R27 = 1 MΩ P1, P2 = 50 kΩ trimmer Condensateurs C13 = 4.7 nF C11 = 47 nF C12 = 100 nF C10 = 220 nF C9, C14, C15, C17, C19 = 10 µF, 16 V, 2 mm pitch C2, C3, C4, C5, C6, C7 = 47 µF, 16 V, 2 mm pitch C1, C8, C16, C18 = 100 µF, 16 V, 2.5 mm pitch Semi-conducteurs D1, D2 = 1N4148 D3 = BAT48 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10 = BC547C Divers BAT1 = Support de pile PP3 9 V (pile non incluse) K1 = haut-parleur 8 Ω, 200 mW S1 = interrupteur à glissière Carte électronique Elektor 240095-1 Support en bois Spécifications Puissance 9 V, 100 mW Dimensions 170 x 140 x 70 mm Poids 250 g
-
Makerfabs Makerfabs Récepteur SenseLoRa LoRa (EU868)
LoRaWAN est bénéfique, mais il est parfois inutile, difficile ou coûteux de mettre en œuvre un réseau LoRaWAN, en particulier lorsqu'on envisage une intégration dans le cloud. Par exemple, la surveillance de l'humidité du sol dans votre jardin ou le suivi des conditions dans la serre de votre ferme peuvent ne pas nécessiter une configuration LoRaWAN complète. Ce récepteur LoRa est conçu pour fonctionner avec les modules Makerfabs SenseLora. Il reçoit les signaux LoRa et les transmet à un ordinateur, permettant aux données d'être affichées, enregistrées et analysées sur l'ordinateur. Téléchargements Manual Software
-
Pimoroni unPhone Plateforme de développement IoT
L'unPhone est une plateforme de développement IoT open-source alimentée par le microcontrôleur ESP32S3. Il dispose d'une connectivité LoRa, Wi-Fi et Bluetooth intégrée, d'un écran tactile et d'une batterie LiPo, offrant une solution robuste et polyvalente pour le développement IoT. Sa compatibilité avec le standard FeatherWing d'Adafruit permet une expansion facile, ce qui en fait un choix idéal pour les éducateurs, les makers et les développeurs à la recherche d'une plateforme flexible et conviviale. Caractéristiques Microcontrôleur ESP32S3 (avec 8 Mo de mémoire Flash et 8 Mo de PSRAM) Communication radio sans licence LoRaWAN (plus l'excellente prise en charge Wi-Fi et Bluetooth de l'ESP32) Écran tactile capacitif LCD de 3,5 pouces (320 x 480) pour un débogage et une création d'interface utilisateur faciles LED IR pour éteindre subrepticement le téléviseur du café Batterie LiPo de 1200 mAh avec chargement USB-C Moteur de vibration pour les notifications Boussole/Accéléromètre Un boîtier robuste Emplacement pour carte SD Boutons d'alimentation et de réinitialisation Programmable en C++ ou CircuitPython Carte d'extension prenant en charge deux sockets Featherwing et une zone de prototypage Micrologiciel Open Source compatible avec l'IDE Arduino, PlatformIO et le framework de développement IDF d'Espressif Inclus unPhone (assemblé) Carte d'extension Câble FPC (pour relier la carte d'extension à unPhone) Supports autocollants pour la carte d'extension Exemples de code C++ library Kick the tyres on everything in the box The main LVGL demo CircuitPython Support forum Textbook (especially chapter 11)
€ 219,00€ 179,95
Membres identique
-
Hti Hti HT-18+ Caméra d'imagerie thermique (256x192)
La Hti HT-18+ est une caméra thermique professionnelle conçue pour des mesures précises de température et une imagerie thermique en temps réel. Il possède une résolution infrarouge impressionnante de 256 x 192 pixels à une fréquence d'images de 25 Hz, ce qui permet d'obtenir des images thermiques claires et détaillées. La plage de mesure de température s'étend de −20°C à +550°C, avec une précision de mesure de ±2°C ou ±2%. La caméra est équipée d'un écran couleur de 3,2 pouces pour une visualisation facile des images thermiques. Il propose cinq palettes de couleurs différentes – arc-en-ciel, rouge fer, couleur froide, noir et blanc et blanc et noir – pour adapter l'affichage aux différentes exigences. Il dispose également d'une mémoire intégrée de 4 Go pour stocker des images et des vidéos au format JPG ou MP4, qui peuvent être transférées vers un ordinateur via une connexion USB. Spécifications Résolution infrarouge 256 x 192 Bande de réponse infrarouge 8 à 14 μm Taille de cellule 12 μm NETD ≤50 mK à 25°C, @F/1.1 Longueur focale de l'objectif 3,2 mm IFOV 3,75 milliards Angle de champ 56° x 42° Mode mise au point Mise au point libre Plage de mesure de la température −20°C~550°C Précision des mesures −15°C à 550°C (±2°C ou ±2%)−20°C à −15°C (±4°C) Résolution de la mesure de la température 0,1°C Mode de mesure de la température Suivi du point central/des points chauds et froids Palette de couleurs Arc-en-ciel, oxyde de fer rouge, couleur froide, noir et blanc. blanc, blanc et amp; noir Paramètre d'émissivité Réglable de 0,01 à 1,00 Fréquence d'image de l'imagerie thermique ≤25 Hz Résolution de la lumière visible 640 x 480 Taille de l'écran 3,2 pouces (240 x 320) Mode d'affichage des images Infrarouge/lumière visible/fusion double lumière Stockage de l'appareil EMMC 4 Go intégré (l'espace de stockage disponible pour l'utilisateur est d'environ 3 Go Format d'image/vidéo de stockage JPG/MP4 Méthode d'exportation d'image/vidéo Connexion USB à l'exportation vers un ordinateur Fonction d'analyse d'image Prise en charge de l'analyse hors ligne sur PC Type de batterie Batterie au lithium rechargeable amovible dédiée Capacité de la batterie 2200 mAh Temps de travail 2 à 3 heures Interface d'alimentation Micro-USB Configuration de l'alimentation 5 minutes, 20 minutes, pas d'arrêt automatique Température de fonctionnement −10°C à +50°C Humidité relative 10% à 85% HR (sans condensation) Langues des menus Anglais, allemand, italien, chinois Dimensions 90 x 105 x 223 mm Poids 389 g Inclus 1x Hti HT-18+ Caméra d'imagerie thermique 1x Câble USB 1x Manuel Téléchargements Manual
-
Elektor Labs Carte de formation Elektor Arduino Nano MCCAB
La carte d'apprentissage Elektor Arduino Nano MCCAB contient tous les composants (avec Arduino Nano) nécessaires aux exercices, tels que des diodes électroluminescentes, des interrupteurs, des boutons-poussoirs, des émetteurs de signaux acoustiques, etc. Ce système de formation à microcontrôleur permet également d'interroger ou de commander des capteurs, des moteurs ou des assemblages externes. Spécifications (Carte de formation Arduino Nano MCCAB) Alimentation électrique Via la connexion USB du PC connecté ou un bloc d'alimentation externe (non inclus) Tension de fonctionnement +5 Vcc Tension d'entrée Toutes les entrées 0 V to +5 V VX1 and VX2 +8 V to +12 V (uniquement en cas d'utilisation d'une alimentation externe) Périphérie du matériel LCD 2x16 caractères Potentiomètre P1 & P2 JP3 : sélection de la tension de fonctionnement de P1 et P2 Distributeur SV4 : Distributeur pour les tensions de fonctionnementSV5, SV6 : Distributeur pour les entrées/sorties du microcontrôleur Interrupteurs et boutons Bouton RESET sur le module Arduino Nano 6x interrupteurs à bouton poussoir K1 ... K6 6x interrupteurs à glissière S1 ... S6 JP2 : Connexion des interrupteurs avec les entrées du microcontrôleur Buzzer Buzzer piézo Buzzer1 avec cavalier sur JP6 Voyants lumineux 11 x LED : Indicateur d'état des entrées/sorties LED L sur le module Arduino Nano, connectée au GPIO D13 JP6 : Connexion des LED LD10 ... LD20 avec les GPIO D2 ... D12 Interfaces sérieSPI ET I²C JP4 : Sélection du signal à la broche X du connecteur SPI SV12 SV9 à SV12 : interface SPI (3,3 V/5 V) ou interface I²C Sortie de commutation pour les appareils externes SV1, SV7 : sortie de commutation (maximum +24 V/160 mA, alimentation externe) SV2 : 2x13 connecteurs pour la connexion de modules externes Matrice de 3x3 LED(9 LED rouges) SV3 : Colonnes de la matrice LED 3x3 (sorties D6 ... D8) JP1 : Connexion des lignes avec les GPIOs D3 ... D5 Logiciel Bibliothèque MCCABLib Contrôle des composants matériels (interrupteurs, boutons, DEL, matrice de DEL 3x3, buzzer) sur la carte de formation MCCAB. Température de fonctionnement Jusqu'à +40 °C Dimensions 100 x 100 x 20 mm Spécifications (Arduino Nano) Microcontrôleur ATmega328P Architecture AVR Tension de fonctionnement 5 V Mémoire flash 32 Ko, dont 2 Ko utilisés par le chargeur de démarrage SRAM 2 KB Vitesse d'horloge 16 MHz Connecteurs d'entrée analogique 8 EEPROM 1 KB Courant continu par connecteur d'E/S 40 mA sur un connecteur d'E/S, maximum total de 200 mA sur l'ensemble des connecteurs Tension d'entrée 7-12 V Connecteurs E/S numériques 22 (dont 6 PWM) Sortie PWMt 6 Consommation électrique 19 mA Dimensions 18 x 45 mm Poids 7 g Inclus 1x Elektor Arduino Nano Training Board MCCAB 1x Arduino Nano
-
Elektor Labs Arbre de Noël circulaire d'Elektor
Ce kit d'arbre de Noël basé sur Arduino contient 36 LED RVB de 8 mm (WS2812D-F8) programmables numériquement et adressables individuellement pour créer des effets lumineux impressionnants. Les LED peuvent être contrôlées de l'extérieur ou par un Arduino Nano ESP32. Caractéristiques 36 LED RVB numériques (adressables par NeoPixel) Convient à tout système de microcontrôleur Correspondance parfaite avec Arduino Nano ESP32 (non inclus) PCB de haute qualité : 5x circulaires, 1x carrés Assemblage facile et amusant avec des outils populaires Manuel de construction détaillé Dimensions: 136 x 136 x 175 mm Inclus PCB (136 x 136 mm) Résistances R1...R36 = 75Ω, 0W125, 5%, SMD 0805 P1 = potentiomètre circulaire 6mm réglable par le dessus, 10kΩ, 0W1, 20%, (Piher PT6KV-103A2020) Condensateurs C1...C36 = 100nF, 50V, 5%, X7R, SMD 0805 C37, C38 = 47uF, 6,3V, 10%, tantale, taille de boîtier A (1206) Semi-conducteurs D1, D2 = S5J-E3/57T, taille de boîtier SMD SMC LED1-LED36 = WS2812D-F8, 8mm, THT Autres K1, JP1 = barrettes, 3x1, vertical, pas de 2,54mm Cavalier de shunt pour JP1, pas de 2,54mm K2 = MJ-179PH (Multicomp Pro), connecteur d'alimentation CC, 4 A, diamètre des broches 1,95 mm S1 = Interrupteur DIP, 4 voies PA1...PE6 = 2 m de fil, 0,81mm rigide, 0,52mm² / 20AWG, isolé vert (Alpha Wire 3053/1 GR005) H1...H5 = Entretoise en nylon, femelle-femelle, M3, 5mm H1...H5 = Vis en nylon, M3, 5mm Optionnel Arduino Nano ESP32 avec les connecteurs Liens Elektor Labs
-
puhui T-962 v2.0 Four à refusion (version améliorée d'Elektor)
Cette version améliorée 2.0 (disponible exclusivement chez Elektor) contient les changements suivantes : Enhanced protective earthing (PE) for furnace chassis Extra thermal insulation layer around furnace to reduce odors Connexion à un ordinateur permettant l'édition des courbes sur un PC Fonctionnalités telles que le contrôle constant de la température et les fonctions de temporisation Four à refusion à infrarouge T-962 v2.0 est un four de soudure par fusion pour CI contrôlé par microprocesseur. Il peut être utilisé pour souder efficacement divers composants CMS et BGA. L’ensemble du processus de soudure est automatique et très facile à utiliser. Cette machine utilise un rayonnement infrarouge puissant et la circulation du flux d’air chaud, ce qui permet de maintenir une température très précise et uniformément répartie. Un plaque à fentes est conçu pour contenir la pièce à traiter, et permet d’utiliser des techniques de soudure sûres et de manipuler des CMS, BGA et d’autres petites pièces électroniques montées circuits imprimes. Le T-962 v2.0 peut être utilisé pour la dessoudure afin de rectifier automatiquement les joints de soudure défectueux, pour retirer/remplacer les composants endommagés et pour achever de petits modèles ou prototypes électroniques. Caractéristiques Large zone de soudure infrarouge Surface effective de soudure : 180 x 235 mm ; cela augmente considérablement la plage d’utilisation de ce dispositif et le rend un investissement économique. Choix de différents cycles de soudure Les paramètres de huit cycles de soudure sont prédéfinis et l’ensemble du processus peut être achevé automatiquement en commençant par le préchauffage, le trempage et la refusion jusqu’au refroidissement. Chauffage spécifique et égalisation de la température pour tous les modèles. Utilise jusqu’à 800 W de chauffage infrarouge économe en énergie et une circulation d’air pour refaire couler la soudure. Design ergonomique, pratique et facile à utiliser Une construction de qualité, mais aussi un poids léger et un faible encombrement permettent au T-962 v2.0 d’être facilement positionné sur un établi, transporté ou stocké. Nombreuses fonctions disponibles Le T-962 v2.0 peut souder la plupart des petits composants des circuits imprimés, par exemple CHIP, SOP, PLCC, QFP, BGA, etc. Il s’agit de la solution de réparation idéale, allant des simples fabrications à la production de petits lots. Caractéristiques techniques Zone de soudure (max.) 180 x 235 mm Puissance (max.) 800 W Plage de température 0-280°C Mode de chauffage Infrarouge Temps de traitement 1 à 8 minutes Alimentation 220 V AC/50 Hz Écran LCD avec rétroéclairage Mode de contrôle 8 courbes de température intelligentes Dimensions 310 x 290 x 170 mm Poids 6,2 kg Inclus 1x T-962 v2.0 Four à refusion (version Elektor) 1x Clé USB (avec manuel et logiciel) 2x Fusibles 1x Cordon d'alimentation (UE) Téléchargements Manual