HATs Raspberry Pi

47 produits


  • HiFiBerry DAC+ ADC

    HiFiBerry HiFiBerry DAC+ ADC – convertisseur N/A et A/N pour RPi

    Caractéristiques Entrée et sortie stéréo DAC Burr-Brown dédié 192 kHz / 24 bits de haute qualité CAN Burr-Brown dédié 192 kHz / 24 bits de haute qualité Contrôle du volume matériel pour DAC. Le volume de sortie peut être contrôlé à l'aide de « alsamixer » ou de toute application prenant en charge les commandes du mélangeur ALSA. Se connecte directement sur le Raspberry Pi. Aucune soudure requise. Compatible avec tous les modèles Raspberry Pi dotés d'un connecteur GPIO à 40 broches Aucune alimentation supplémentaire requise. Trois régulateurs de tension linéaires à très faible bruit. Conforme HAT, EEPROM pour configuration automatique. Connecteurs de sortie RCA plaqués or. Comprend des entretoises 4M 2,5 x 12 mm. Entrée analogique, prise téléphonique 3,5 mm Sortie analogique RCA Sortie analogique (P5) Cavalier de configuration d'entrée (J1) Connecteur pour entrée symétrique (P6) Veuillez noter : la disposition et les composants peuvent changer sans préavis. Connecteur d'entrée symétrique/asymétrique (P6) Le connecteur à 5 broches peut être utilisé pour connecter une entrée symétrique. Veuillez noter que l'entrée symétrique doit être sélectionnée avec les cavaliers et aura toujours un gain de 12 dB. Il ne doit pas être utilisé avec des entrées de niveau ligne. La broche 1 est à gauche. à droite + droite - GND gauche - gauche + Connecteur de sortie (P5) Le connecteur de sortie réalise des connexions à des composants externes comme un amplificateur. La broche 1 est en haut à gauche. +5V 1 2 R. GND 3 4 GND +5V 5 6 L Paramètres de gain d'entrée (J1) Le bloc cavalier est responsable de la configuration des entrées. Il est recommandé d'utiliser le paramètre par défaut sans gain d'entrée supplémentaire. Un gain de 32 dB peut être utilisé pour connecter des microphones dynamiques. Les cavaliers sont numérotés de haut en bas. 1 2 3 4 fonction 1 0 0 – Gain de 0 dB 0 1 1 – Gain de 12 dB 0 1 0 – Gain de 32 dB 0 0 1 – entrée symétrique, gain de 12 dB Caractéristiques Tension d'entrée maximale : 2,1 Vrms - 4,2 Vrms pour une entrée symétrique Tension de sortie maximale : 2,1 Vrms Rapport signal/bruit ADC : 110 dB Rapport signal/bruit DAC : 112 dB CAN THD+N : -93 dB DAC THD+N : -93 dB Tension d'entrée pour les distorsions les plus faibles : 0,8 Vrms Gain d'entrée (configurable avec des cavaliers) : 0 dB, 12 dB, 32 dB Consommation électrique : < 0,3 W Fréquences d'échantillonnage : 44,1 kHz - 192 kHz Pour utiliser le HiFiBerry DAC + ADC, votre noyau Linux Raspberry Pi doit être au minimum en version 4.18.12. Cliquez ici pour savoir comment mettre à jour le noyau du Raspberry Pi Utiliser des microphones avec le DAC+ ADC Le DAC+ ADC est équipé d'une entrée analogique stéréo qui peut être configurée pour une large gamme de tensions d'entrée. Il fonctionne mieux avec les sources analogiques de niveau ligne. Cependant, il est également possible de l'utiliser comme entrée microphone. Vous ne pouvez utiliser que des microphones dynamiques. Les microphones nécessitant une alimentation ne sont pas pris en charge. La tension de sortie du microphone est très faible. Cela signifie que vous devez l'amplifier. Le DAC+ ADC dispose déjà du préamplificateur nécessaire. Vous devrez régler correctement les cavaliers. Le son de l’entrée ne sera pas automatiquement lu sur la sortie. Vous devrez utiliser un logiciel qui lit l'entrée et la restitue. Définition des paramètres corrects de l'amplificateur d'entrée pour un microphone Par défaut, la sensibilité d'entrée est adaptée aux sources audio de niveau ligne. Cela se fait via un cavalier sur l'en-tête J1. Pour utiliser un microphone, le cavalier doit être configuré comme indiqué ci-dessous. Entrée audio vers sortie Il n'y a pas de connexion directe entre l'entrée et la sortie. Cela conduit à ce que l'entrée du microphone connecté ne soit pas restituée automatiquement. Si vous souhaitez l'entendre sur la sortie, vous devez utiliser l'outil de ligne de commande alsaloop peut être utilisé pour cela.

    € 99,95

    Membres € 89,96

  • Witty Pi 4 – Real-time Klok en Power Management voor Raspberry Pi

    Witty Pi 4 – horloge temps réel et gestion de l'alimentation pour Raspberry Pi

    Witty Pi est une carte d'extension qui ajoute une horloge en temps réel et permet la gestion de l'alimentation à votre Raspberry Pi. Elle peut définir le rythme de mise en marche et d'arrêt de votre Raspberry Pi, et réduire considérablement la consommation d'énergie. Witty Pi 4 est la quatrième génération de Witty Pi et il intègre ces ressources matérielles : Horloge temps réel calibrée en usine, à compensation thermique avec une précision de ±2 ppm. Capteur de température avec une résolution de 0,125 °C. Convertisseur CC/CC intégré qui supporte jusqu'à 30 V CC. Microcontrôleur (MCU) 8 bits AVR avec mémoire flash programmable de 8 ko. Horloge en temps réel précise et programmation d'allumage et d'extinction . L'horloge en temps réel (RTC) du Witty Pi 4 a été calibrée en usine et le micrologiciel du Witty Pi 4 effectue également une compensation de température pour le quartz. Cela rend le RTC très précis et l'erreur annuelle réelle est limitée à ±2 ppm. Lorsque votre Raspberry Pi est démarré, l'heure stockée dans le RTC remplace l'heure du système. Par conséquent, votre Raspberry Pi connaît l'heure exacte même sans accéder à l'Internet. Vous pouvez programmer le démarrage et/ou l'arrêt de votre Raspberry Pi, et en faire un dispositif contrôlé par le temps. Vous pouvez même définir un script de programmation pour prévoir une séquence ON/OFF compliquée pour votre Raspberry Pi. La programmation de la séquence ON/OFF pour le Raspberry Pi est la fonctionnalité la plus populaire de Witty Pi, et elle est extrêmement utile pour les systèmes alimentés par batterie. En allumant le Raspberry Pi uniquement lorsque c'est nécessaire, la batterie peut être utilisée beaucoup plus longtemps avec Witty Pi installé. Système contrôlé par la température Le capteur de température du Witty Pi 4 a une résolution de 0,125 °C. Les données de température sont utilisées pour compenser le quartz et rendre le RTC plus précis. Vous pouvez également spécifier l'action (démarrage ou arrêt) lorsque la température passe au-dessus ou en dessous du seuil prédéfini. Ce qui signifie que vous pouvez également faire de votre Raspberry Pi un système contrôlé par la température. Convertisseur CC/CC et interrupteur d'alimentation e-latching Witty Pi 4 est équipé d'un convertisseur CC/CC embarqué, qui vous permet d'alimenter votre dispositif avec une alimentation de 6~30V. Vous pouvez également alimenter votre appareil avec 5 V via le connecteur USB de type C. . Witty Pi 4 met également en œuvre un interrupteur d'alimentation e-Latching, qui est très similaire à l'interrupteur d'alimentation de votre PC/ordinateur portable. Vous pouvez allumer/éteindre votre Raspberry Pi d'une simple pression sur le bouton. Le logiciel fonctionnant en arrière-plan exécutera la commande d'arrêt avant que l'alimentation ne soit coupée, cela évite la corruption des données causée par un arrêt brutal. Witty Pi 4 prend en charge tous les modèles Raspberry Pi qui disposent du connecteur GPIO à 40 broches, notamment A+, B+, 2B, Zero, Zero W, Zero 2 W, 3B, 3B+, 3A+ et 4B. Vous devrez souder au préalable le connecteur à 40 broches aux modèles Zero/Zero W/Zero 2 W, afin qu'ils puissent établir une connexion fiable avec Witty Pi. Dispositif I²C unique Witty Pi 4 utilise un microcontrôleur pour émuler un seul périphérique I²C avec l'adresse par défaut 0x08, et également mapper tous les registres I²C de l'horloge en temps réel et du capteur de température comme registres I²C virtuels dans le même périphérique. Vous pouvez accéder à tous les registres I²C de l'horloge en temps réel et du capteur de température via le seul périphérique I²C émulé par Witty Pi 4. . L'avantage de cette nouvelle conception est que Witty Pi 4 cache d'autres périphériques I²C (horloge en temps réel, capteur de température) et devient leur proxy pour communiquer avec le Raspberry Pi. Comme l'adresse I²C utilisée par Witty Pi 4 peut être modifiée à n'importe quelle valeur, vous pouvez toujours éviter les conflits d'adresse I²C. Prise en charge de l'UWI Witty Pi 4 est entièrement pris en charge par UWI (UUGear Web Interface), et vous pouvez accéder à votre Witty Pi 4 sur n'importe quel appareil qui a un accès réseau. Caractéristiques techniques ..Courant de sortieJusqu'à 3 A pour le Raspberry Pi et ses périphériques..Dimension65 x 56 x 19 mm..Inclus 1x carte Witty Pi 4 1x batterie CR2032 4x M2.5 x 11mm standoff en cuivre 8x vis M2.5 Téléchargements Manuel d'utilisation GitHub Microcontrôleur ATtiny841 (fiche technique) Horloge temps réel PCF85063A (fiche technique), calibrée en usine Capteur de température LM75B (fiche technique) Convertisseur CC/CC MP4462 (fiche technique) Commutateur MOSFET AO4616 (fiche technique) Batterie CR2032 (pour le maintien de l'heure lorsque l'alimentation est coupée) Alimentation CDC 5 V (via le connecteur USB type C)ou DC 6 V~30 V (via le connecteur XH2.54) Courant de veille ~0,5 mA Environnement de fonctionnement Température -30°C~80°C (-22°F~176°F)Humidité 0~80% RH, sans condensation, sans gaz corrosif Poids 23 g (sans accessoires)

    € 44,95

    Membres € 40,46

  • Waveshare Mini Base Board (A) for Raspberry Pi Compute Module 4

    Waveshare Waveshare Mini carte de base (A) pour module de calcul Raspberry Pi 4

    Caractéristiques Prise CM4 Convient à toutes les variantes du Compute Module 4 La mise en réseau Connecteur Gigabit Ethernet RJ45 M.2 M KEY, prend en charge les modules de communication ou SSD NVME Connecteur En-tête GPIO 40 broches Raspberry Pi USB 2x USB 2.0 Type-A 2x USB 2.0 via connecteur FFC Afficher Port d'affichage MIPI DSI (connecteur FPC 1,0 mm à 15 broches) Caméra 2x port caméra MIPI CSI-2 (connecteur FPC 1,0 mm 15 broches) Vidéo 2x ports HDMI (dont un port via connecteur FFC), prend en charge la sortie 4K 30 ips RTC APRÈS Stockage Prise de carte MicroSD pour les variantes Compute Module 4 Lite (sans eMMC) En-tête de ventilateur Pas de contrôle du ventilateur, 5 V Entrée de puissance 5 V Dimensions 85x56mm Inclus 1x CM4-IO-BASE-A 1x vis de montage SSD Téléchargements Wiki

    € 24,95

    Membres € 22,46

  • Cytron Maker pHAT for Raspberry Pi

    Cytron Cytron Maker pHAT pour Raspberry Pi

    Le Maker pHAT est la solution aux problèmes les plus courants auxquels les débutants sont confrontés en commençant par Raspberry PI. Sa conception intelligente et simple facilite sa fixation sur votre Pi et vous évite tout le travail fastidieux de connexion de divers autres accessoires. De plus, les LED correspondant à chaque broche permettent de voir extrêmement facilement où se situe un problème potentiel. Le Maker pHat a la même taille que le Raspberry Pi Zero avec les 4 trous de montage alignés. Cependant, il peut être utilisé avec les Raspberry Pi 3B, 3B+ et 3A+, en insérant un en-tête d'empilage 2 x 20. Caractéristiques Taille Raspberry Pi Zero, s'empile parfaitement sur Raspberry Pi Zero Compatible avec Raspberry Pi 3B / 3B+ de taille standard, Raspberry Pi 3A+ de taille moyenne et Raspberry Pi Zero / W / WH de taille plus petite. Empreinte GPIO Raspberry Pi standard. Réseau de LED pour les broches GPIO sélectionnées (GPIO 17, 18, 27, 22, 25, 12, 13, 19). 3x boutons-poussoirs programmables intégrés (GPIO 21, 19 et 20, doivent être configurés comme entrée pull up). Buzzer actif intégré (GPIO 26). Étiquettes appropriées pour tous les GPIO, y compris SPI, UART, I2C, 5V, 3,3V et GND. Utilisez la prise USB Micro-B pour l’entrée 5 V et la communication USB vers UART. Série USB facilitée par le FT231X Tension d'entrée : USB 5 V, depuis un ordinateur, une banque d'alimentation ou un adaptateur USB standard. Monter sur Raspberry Pi Zero Montage sur Raspberry Pi 3B, 3B+ et 3A+

    € 14,95

    Membres € 13,46

  •  -26% 4tronix Picon Zero v1.3 – Intelligent Robotics Controller for Raspberry Pi

    4tronix Picon Zero v1.3 – Intelligent Robotics Controller for Raspberry Pi

    Le Picon Zero est un module complémentaire pour le Raspberry Pi. Il a la même taille qu'un Raspberry Pi Zero, ce qui le rend idéal pour fonctionner comme un pHat. Bien entendu, il peut être utilisé sur n’importe quel autre Raspberry Pi via un connecteur GPIO 40 broches. En plus de deux pilotes de moteur H-Bridge complets, le Picon Zero dispose de plusieurs broches d'entrée/sortie vous offrant plusieurs options de configuration. Cela vous permet d'ajouter facilement des sorties ou des entrées analogiques à votre Raspberry Pi sans logiciel compliqué ni pilote spécifique au noyau. En même temps, il ouvre 5 broches GPIO du Raspberry Pi et fournit l'interface pour un capteur de distance à ultrasons HC-SR04. Le Picon Zero est livré avec tous les composants, y compris les embases et les bornes à vis, entièrement soudés. La soudure n'est pas nécessaire. Vous pouvez l'utiliser dès la sortie de la boîte. Caractéristiques PCB format pHat : 65 mm x 30 mm Deux pilotes de moteur H-Bridge complets. Pilotez jusqu'à 1,5 A en continu par canal, entre 3 V et 11 V. Chaque sortie moteur possède à la fois un connecteur mâle à 2 broches et une borne à vis à 2 broches. Les moteurs peuvent être alimentés par le 5 V du Picon Zero ou par une source d'alimentation externe (3 V - 11 V). Le 5 V du Picon Zero peut être sélectionné parmi la ligne 5 V du Raspberry Pi ou un connecteur USB sur le Picon Zero. Cela signifie que vous pouvez effectivement disposer de 2 banques de batteries USB : une pour alimenter les servos et les moteurs du Picon Zero et l'autre pour alimenter le Pi. 4 Entrées pouvant accepter jusqu'à 5 V. Ces entrées peuvent être configurées comme suit : Entrées numériques Entrées analogiques DS18B20 DHT11 6 sorties pouvant piloter 5 V et être configurées comme : Sortie numérique Sortie PWM Servomoteur NéoPixel WS2812 Toutes les entrées et sorties utilisent des embases mâles GVS à 3 broches. Embase femelle à 4 broches qui se connecte directement à un capteur de distance à ultrasons HC-SR04. Connecteur femelle à 8 broches pour les signaux Ground, 3,3 V, 5 V et 5 GPIO vous permettant d'ajouter leurs fonctionnalités supplémentaires. Configuration matérielle Picon Zero dispose de deux cavaliers pour définir la configuration matérielle. Assurez-vous de les avoir placés dans la bonne position. JP1 – Carte Sélecteur 5V. Ce cavalier sélectionne l'endroit où obtenir l'alimentation 5 V pour les sorties Picon Zero. Les options sont : Cavalier en haut entre RPI et 5 V. L'alimentation 5 V de la carte provient des broches Raspberry Pi du connecteur GPIO. En raison des appareils à faible puissance de sortie et des moteurs 5 V, tous les appareils peuvent être alimentés avec une seule entrée d'alimentation 5 V. Jumper en bas entre USB et 5 V. L'alimentation 5 V provient du connecteur microUSB du Picon Zero. Utile pour les appareils à puissance de sortie plus élevée, puisque vous pouvez fournir une alimentation supplémentaire via le connecteur micro-USB sur la carte JP2 – Sélecteur de puissance du moteur. Ce cavalier sélectionne l'endroit où les moteurs reçoivent la puissance. Les deux options ici sont les suivantes : Cavalier en haut entre MotorPower et Vin. Les moteurs sont entraînés via le bornier à vis à 2 broches. La tension peut être comprise entre 3 V et 11 V. Utile pour les moteurs qui nécessitent une tension différente de 5 V, ou qui nécessitent plus de courant que celui disponible sur l'un des connecteurs d'entrée USB. Cavalier en bas entre 5 V et MotorPower. Les moteurs sont alimentés par le 5 V de la carte. Configuration du Raspberry Pi Le Picon Zero est un appareil I²C. Assurez-vous que votre Raspberry Pi est correctement configuré pour utiliser I²C et SMBus : sudo apt-get install python-smbus python3-smbus python-dev python3-dev sudo nano /boot/config.txt Ajoutez les lignes suivantes à la fin du fichier dtparam=i2c1=on dtparam=i2c_arm=on Appuyez sur Ctrl-X et utilisez les invites par défaut pour enregistrer redémarrage sudo Branchez le Picon Zero sur le Pi et exécutez i2cdetect -y 1 Si tout se passe bien, vous verrez le Picon Zero apparaître comme adresse 22 comme indiqué ci-dessous :

    € 18,95€ 13,95

    Membres identique

  • Waveshare Stack HAT for Raspberry Pi

    Waveshare Chapeau Waveshare Stack pour Raspberry Pi

    Il s'agit d'un kit d'extension d'E/S conçu pour Raspberry Pi, qui fournit 5 jeux de 2 x 20 broches, ce qui signifie un moyen pratique « d'empiler » plusieurs HAT différents ensemble et de les utiliser comme une combinaison/un projet spécifique. Caractéristiques Connectivité Raspberry Pi standard, directement enfichable OU via un câble ruban 5 jeux d'en-têtes 2x20 broches, connectent plusieurs HAT ensemble Port d'alimentation externe USB, fournit suffisamment d'alimentation pour plusieurs HAT Étiquettes d'épingles claires et descriptives pour une utilisation facile Patins de cavalier réservés sur la face inférieure, les connexions des broches sont modifiables par soudure, pour éviter les conflits de broches Remarque : assurez-vous qu'il n'y a aucun conflit de broches entre les HAT que vous souhaitez utiliser ensemble avant de vous connecter. Caractéristiques Dimensions : 183 × 65 mm Taille du trou de montage : 3 mm Inclus 1x CHAPEAU Pile 1x câble ruban 40 broches 1x connecteur à broches mâle 2x20 1x pack de vis RPi (4 pièces) x1

    € 17,95

    Membres € 16,16

  • JOY-iT ProtoShield+ for Raspberry Pi

    JOY-iT JOY-iT ProtoShield+ pour Raspberry Pi

    Avec notre circuit imprimé prototype Proto+, vos propres conceptions et projets peuvent être facilement mis en œuvre. La carte est équipée de tous les connecteurs courants et dispose également d'une maquette intégrée pour une mise en œuvre rapide de vos idées et développements. La barre GPIO intégrée permet de brancher facilement la carte d'extension sur un Raspberry Pi et de l'utiliser immédiatement. Les vis et entretoises fournies permettent de connecter le PCB directement au Raspberry Pi. Les bornes à vis sont déjà installées et facilitent l'utilisation et l'expérimentation rapide. MANNEQUIN Carte prototype Proto+ CONNEXIONS DISPONIBLES GPIO (40 pôles), SOIC16, platine d'essai, 2x 3,3 V, 2x 5 V, UART, I2C, SPI AVIS Les bornes à vis extérieures sont connectées aux connecteurs GPIO. COMPATIBLE AVEC Framboise Pi B+, 2, 3 DIMENSIONS 55x85mm POIDS 44g ARTICLES EXPÉDIÉS Carte Proto+, vis, entretoises EAN 4250236814797 N° D'ARTICLE RB-Proto+

    € 11,95

    Membres € 10,76

  •  -20% Picade X HAT USB-C

    Pimoroni Picade X CHAPEAU USB-C

    Transformez votre Raspberry Pi en console de jeux rétro ! Picade X HAT comprend des entrées joystick et bouton, un DAC/amplificateur I²S 3 W et un interrupteur d'alimentation logiciel. Ce HAT possède toutes les mêmes fonctionnalités que le Picade HAT original, mais dispose désormais de connecteurs Dupont femelles simples pour connecter votre joystick et vos boutons. Faites simplement apparaître Picade le pilote ! Il est idéal pour vos propres constructions de bornes d'arcade DIY ou pour les interfaces nécessitant de gros boutons et du son colorés. Caractéristiques DAC audio I²S avec amplificateur 3 W (mono) et bornes push-fit Système marche/arrêt sécurisé avec bouton d'alimentation tactile et LED Connecteur USB-C pour l'alimentation (alimente votre Pi) Entrées de joystick numérique à 4 voies 6x entrées de bouton de lecteur 4x entrées de bouton utilitaire 1x entrée de commutateur d'alimentation douce 1x sortie LED d'alimentation Connecteur bouton plasma Broches de dérivation pour l'alimentation, I²C et 2 boutons supplémentaires Brochage du Picade X HAT Compatible avec tous les modèles Raspberry Pi 40 broches Le DAC I²S mélange les deux canaux audio numériques du Raspberry Pi en une seule sortie mono. Celui-ci passe ensuite par un amplificateur de 3 W pour alimenter un haut-parleur connecté. La carte dispose également d'un interrupteur d'alimentation logiciel qui vous permet d'allumer et d'éteindre votre Pi en toute sécurité sans risque de corruption de la carte SD. Appuyez sur le bouton connecté pour démarrer, puis maintenez-le enfoncé pendant 3 secondes pour arrêter complètement et débrancher l'alimentation. Installation du logiciel Ouvrez un terminal et tapez curl https://get.pimoroni.com/picadehat | bash pour exécuter le programme d'installation. Vous devrez redémarrer une fois l'installation terminée, si cela ne vous invite pas à le faire. Le logiciel ne prend pas en charge Raspbian Wheezy Remarques Avec l'alimentation USB-C connectée via Picade X HAT, vous devrez soit appuyer sur le bouton d'alimentation connecté, soit sur le bouton marqué « interrupteur » sur le HAT pour allumer votre Pi.

    € 24,95€ 19,95

    Membres identique

  • Sequent Microsystems Home Automation V4 8-Layer Stackable HAT for Raspberry Pi

    Sequent Microsystems Home Automation V4 Chapeau empilable à 8 couches pour Raspberry Pi

    Le HAT Domotique utilise uniquement des connecteurs enfichables. De plus, la dernière version (V4.0 et ultérieure) dispose de deux nouveaux ports de communication : 1-Wire et RS485. La carte utilise uniquement une alimentation de 5 V. L'alimentation élévateur intégrée génère 12 V pour alimenter les sorties analogiques 0-10 V. Un bouton-poussoir à usage général, connecté directement à une broche GPIO du Raspberry Pi, peut être utilisé pour arrêter le Raspberry Pi sans clavier ou pour forcer n'importe quelle sortie à un état souhaité. Solution idéale pour vos projets de domotique Raspberry Pi. Lisez les températures dans jusqu'à 8 zones avec des entrées analogiques. Contrôlez votre système de chauffage et de climatisation avec les 8 relais intégrés. Utilisez les 8 entrées numériques optiquement isolées pour votre système de sécurité. Activez le chien de garde matériel pour surveiller et redémarrer le Raspberry Pi en cas de blocage du logiciel. Contrôlez les systèmes à quatre lumières avec les quatre sorties PWM à drain ouvert (vous fournissez une alimentation externe jusqu'à 24 V). Contrôlez quatre variateurs de lumière à l'aide de sorties 0-10 V. Compatibilité La carte est compatible avec toutes les versions de Raspberry Pi de Zero à 4. Elle partage le bus I²C en utilisant seulement deux des broches GPIO du Raspberry Pi pour gérer les huit cartes. Cette fonctionnalité laisse les 24 GPIO restants disponibles pour l'utilisateur. Exigences d'alimentation La carte domotique a besoin de 5 V pour fonctionner et peut être alimentée depuis Raspberry Pi ou depuis son propre connecteur enfichable. Les bobines de relais intégrées sont également alimentées à partir du 5 V. Une alimentation élévateur de tension intégrée de 5 V à 12 V génère la tension nécessaire pour piloter les sorties analogiques 0-10 V. Un régulateur local de 3,3 V alimente le reste du circuit. La carte a besoin de 50 mA pour fonctionner avec tous les relais désactivés. Chaque relais a besoin de jusqu'à 80 mA pour s'allumer. Relais Les 8 relais intégrés ont des contacts reliés à des connecteurs enfichables robustes, ce qui rend la carte facile à utiliser lorsque plusieurs cartes sont empilées. Les relais sont regroupés en deux sections de quatre relais chacune, avec une borne commune et un contact NO pour chaque relais. Les relais sont évalués à 10 A/24 V CC et 250 V CA, mais en raison des limitations de la géométrie de la carte, les relais ne peuvent commuter que 3 A et 24 V, CA ou CC. Les LED d'état indiquent lorsque les relais sont activés ou désactivés. Empiler plusieurs cartes Jusqu'à huit cartes domotiques peuvent être empilées sur votre Raspberry Pi. Chaque carte est identifiée par des cavaliers que vous installez pour indiquer le niveau dans la pile. Les cartes peuvent être installées dans n'importe quel ordre. Le cavalier à trois positions situé dans le coin supérieur droit de la carte sélectionne le niveau de pile. Caractéristiques Huit relais avec LED d'état et contacts NO Empilable sur huit couches Huit entrées A/D 12 bits, fréquence d'échantillonnage de 250 Hz Quatre sorties DAC 13 bits (gradateurs 0-10 V) Quatre sorties PWM 24 V/4 A à drain ouvert Huit entrées numériques optiquement isolées Fermeture de contact/compteurs d'événements jusqu'à 500 Hz Quatre entrées d'encodeur en quadrature 26 GPIO de Raspberry Pi disponibles Ports de communication 1-WIRE et RS485 Connecteurs enfichables 26-16 AWG pour tous les ports Chien de garde matériel embarqué Fusible réarmable intégré Protection contre l'inversion de l'alimentation Entretoises en laiton, vis et écrous inclus Auto-test du matériel avec câble de bouclage Matériel open source, schémas disponibles Processeur 32 bits fonctionnant à 64 MHz Utilise uniquement le port I²C (adresse 0x28..0x2f), toutes les broches GPIO disponibles Caractéristiques Alimentation : connecteur enfichable, 5 V/3 A Consommation électrique : 50 mA (tous les relais désactivés), 700 mA (tous les relais activés) Fusible réarmable intégré : 3 A Sorties à drain ouvert : maximum 3 A, 24 V Relais 1,2,3,4,5,8 : contacts NO, 6 A/24 VAC ou DC Relais 6.7 : 3 A/24 VAC ou DC Entrées analogiques : Tension d'entrée maximale : 3 V Impédance d'entrée : 50 KΩ Résolution : 12 bits Taux d'échantillonnage : 250 échantillons/sec. Sorties DAC : Charge résistive : Minimum 1 KΩ Précision : ±1 % Entrées numériques opto-isolées : Courant direct d'entrée : typique 5 mA, maximum 50 mA Résistance série d'entrée : 1K Tension inverse d'entrée: 5V Tension directe d'entrée : 25 V à 10 mA Résistance d'isolation : minimum 10 12 Ω Inclus Carte empilable domotique pour Raspberry Pi avec carte auto-test Le matériel de montage 4x entretoises mâle-femelle en laiton M2,5x18 mm 4x vis en laiton M2,5x5 mm 4x écrous en laiton M2,5 2x cavaliers de niveau pile Toutes les fiches de connecteur requises Carte en plastique laminé montrant le brochage IO Téléchargements Guide de l'utilisateur Schéma du matériel Open Source Dessin CAO 2D Ligne de commande Bibliothèques Python Nœuds Noeud-RED Plugin Domoticz OpenPLC

    € 59,95

    Membres € 53,96

  • JOY-iT MotoPi – Motor Control for Raspberry Pi

    JOY-iT JOY-iT MotoPi – Motor Control for Raspberry Pi

    Le MotoPi est une carte d'extension permettant de contrôler et d'utiliser jusqu'à 16 servomoteurs 5 V contrôlés par PWM. La carte peut être alimentée en plus par une tension comprise entre 4,8 V et 6 V, ce qui garantit toujours une alimentation parfaite et permet d'alimenter même des projets plus importants. Avec l'alimentation supplémentaire et le convertisseur analogique-numérique intégré, de nouvelles possibilités peuvent être atteintes. Une alimentation supplémentaire par moteur n'est plus nécessaire car toutes les connexions (Tension, Terre, Contrôle) sont directement connectées à la carte. Le contrôle et la programmation peuvent se faire directement, comme d'habitude, sur le Raspberry Pi. Fonctionnalités spéciales 16 canaux, propre générateur d'horloge, Incl. Convertisseur analogique-numérique Entrée 1 Connecteur d'alimentation coaxial 5,5 / 2,1 mm, 5 V / 6 A max Entrée 2 Bornier à vis, 4,8-6 V / 6 A max Compatible avec Framboise Pi A+, B+, 2B, 3B Dimensions 65x56x24mm Etendue de la livraison Tableau, manuel, matériel de fixation

    € 26,95

    Membres € 24,26

  • JOY-iT Explorer 500 Expansion Board for Raspberry Pi

    JOY-iT Carte d'extension JOY-iT Explorer 500 pour Raspberry Pi

    La carte d'extension JOY-iT Explorer 500 pour carte d'extension Raspberry Pi a les fonctions suivantes : Pin-Header à mettre directement sur le Raspberry Pi B+, 2B ou 3B Interface UART : vous pouvez facilement connecter des modules UART comme par exemple RS232, RS485, USB vers UART (câble TTL) Interface 8x E/S : vous pouvez facilement vous connecter à des modules contrôlés par E/S Interface SPI pour modules contrôlés SPI Interface I²C pour modules contrôlés I²C Interface LCD pour module LCD standard industriel HD44780 USB vers UART, convertisseur avec chipset CP2102 (port mini USB) LED d'alimentation 4x LED programmables 4x boutons programmables Potentiomètre : contrôle du contraste pour les afficheurs LCD (point 6) Support de batterie RTC Quartz 32,768K : quartz RTC CP2102 : puce USB vers UART intégrée pour le débogage CP2102 : Cavalier pour : marche/arrêt RTC : cavalier pour : marche/arrêt LED utilisateur Jumper pour : on / off (point 9) Touches utilisateur Jumper pour : marche / arrêt (point 10) Il peut être directement branché sur le Raspberry. Interfaces UART, 8x E/S, SPI, I²C, HD44780 LCD standard RTC Support de batterie, puce PCF8564-RTC avec quartz RTC 32 789K Cavalier (ON/OFF) RTC, CP2102 (USB vers UART), LED utilisateur, touches utilisateur Dimensions 85 mm x 17 mm x 56 mm Poids 36g Pour plus d'informations, consultez le manuel d'utilisation ici .

    € 16,95

    Membres € 15,26

  • LoRaWAN HAT LR1302 pour Raspberry Pi (EU868)

    Elecrow LoRaWAN HAT LR1302 pour Raspberry Pi (EU868)

    Le module LR1302 est un module passerelle LoRaWAN de nouvelle génération. Son facteur de forme est basé sur le mini-PCIe, et il a une faible consommation d'énergie et de hautes performances. Équipé de la puce de bande de base LoRaWAN SX1302 de Semtech Network, le module de passerelle LR1302 offre diverses fonctions de passerelle avec potentiellement la capacité de transmission sans fil à longue distance. Par rapport aux puces LoRa précédentes SX1301 et SX1308, la puce SX1302 a une sensibilité plus élevée, une consommation d'énergie plus faible et une température de fonctionnement plus basse. Elle prend en charge la transmission de données à 8 canaux, améliore l'efficacité et la capacité de communication et prend en charge les connexions et la transmission de données à un plus grand nombre d'appareils.Elle dispose de deux interfaces d'antenne, une pour l'envoi et la réception de signaux LoRa et une interface U.FL (IPEX) pour une transmission indépendante. Il est également doté d'un blindage métallique pour protéger contre les interférences externes, et pour fournir un environnement de communication fiable.Conçu spécifiquement pour l'IoT, le LR1302 convient à une variété d'applications IoT. Qu'il soit utilisé dans les villes intelligentes, l'agriculture, l'automatisation industrielle ou d'autres domaines, le module LR1302 peut fournir des connexions fiables et une transmission de données efficace. Caractéristiques Utilise la puce LoRa de bande de base Semtech SX1302 avec une consommation d'énergie extrêmement faible et d'excellentes performances Le facteur de forme Mini-PCIe et la conception compacte facilitent l'intégration dans différents dispositifs de passerelle et conviennent aux applications à espace limité, offrant ainsi des options de déploiement flexibles. Prend en charge la transmission de données à 8 canaux, offre une efficacité et une capacité de communication plus efficaces La température de fonctionnement ultra basse élimine le besoin de refroidissement supplémentaire et réduit la taille de la passerelle LoRaWAN Utilise l'avant SX1250 TX/RX avec une sensibilité jusqu'à -139 dBm@SF12 ; Puissance d'émission jusqu'à 26 dBm à 3,3 V Caractéristiques Fréquence 863-870 MHz (EU868) Jeu de puces Puce Semtech SX1302 Sensibilité -125 dBm à 125K/SF7 -139 dBm à 125K/SF12 Puissance d'émission 26 dBm (avec alimentation 3,3 V) Bande passante 125/250/500 kHz Canal 8 canaux LED Puissance : Vert Configuration : Ed Émission : Vert Récepteur : bleu Facteur de forme Mini PCIe, doigt d'or 52 broches Consommation électrique (version SPI) Veille : 7,5 mA Puissance maximale d'émission : 415 mA Réception : 40 mA Consommation électrique (version USB) Veille : 20 mA Puissance maximale d'émission : 425 mA Réception : 53 mA LBT (écouter avant de parler) Soutien Connecteur d'antenne U.FL Température de fonctionnement -40 à 85°C Dimensions (L x L) 30x50.95mm Note Le module de passerelle LoRaWAN LR1302 n'est pas inclus. Téléchargements Wiki Fiche technique SX1302 Diagramme schématique

    € 24,95

    Membres € 22,46

  • Pimoroni Automation HAT

    Pimoroni CHAPEAU Pimoroni Automation

    contrôlez vos appareils et surveillez-les avec notre ultime HAT Raspberry Pi à tout faire! Ce contrôleur regroupe des fonctionnalités de surveillance et d'automatisation de la maison. Avec des relais, des canaux analogiques, des sorties alimentées et des entrées tamponnées (toutes tolérantes à 24 V), vous pouvez maintenant brancher une multitude de goodies à votre Raspberry Pi en même temps. Mieux encore, chaque canal dispose d'un indicateur LED qui vous permet de voir d'un coup d'?il ce qui se passe dans votre installation. Même les canaux analogiques ont des LED de gradation qui vous permettent de voir la valeur qu'ils détectent actuellement - swish! Idéal pour les projets de domotique et d'automatisation, pour doter votre serre d'arroseurs intelligents ou pour programmer le nourrissage de vos poissons! Fonctionnalités Relais 3 x 24 V @ 2 A (terminaux NC et NO ) 3 x CAN 12-bit @ 0-24 V (±2% précision) 3 x 24 V tolerant buffered inputs 3 x 24 V tolerant sinking outputs 15 x LED d'indication des canaux 1 x CAN 12-bit @ 0-3.3 V Terminaux à vis 3.5 mm Indicateurs LED d'alimentation, Comms, et Warn! SPI, TX (#14), RX (#15), #25 pins broken out Automation HAT pinout Compatible avec tous les modèles de Raspberry Pi à 40 broches. Bibliothèque Python Schematic Entièrement assemblé (les broches détachées doivent être soudées). Logiciel/h4> Comme toujours, nous avons mis en place un système très simple à utiliserBibliothèque Python pour profiter des multiples fonctions d'Automation HAT, avec des exemples pour vous aider à démarrer. Nos exemples d'entrées, de sorties et de relais vous montrent comment lire les entrées analogiques et numériques, activer et désactiver les sorties et commander les relais. Notes Nous vous recommandons d'utiliser un jeu d'entretoises M2.5 en laiton avec Automation HAT pour éviter que les broches entrent en contact avec le port HDMI si le HAT est poussé vers le bas. Les charges pour les sorties tamponnées doivent être commutées du côté de la masse, i.e. 12/24 V (de l'alimentation) -> load -> terminal de sortie -> masse (de l'alimentation) Les relais peuvent tolérer jusqu'à 2 A chacun et doivent être commutés sur le côté High. Les sorties peuvent absorber un maximum de 500 mA au total sur les 3 sorties, donc si vous utilisez un seul canal, vous pouvez absorber la totalité des 500 mA sur celui-ci. La précision du CAN est de ±2%. Ne pas utiliser pour commuter les tensions du secteur!

    € 39,95

    Membres € 35,96

  • SparkFun Top pHAT for Raspberry Pi

    SparkFun SparkFun Top pHAT pour Raspberry Pi

    Pouvez-vous utiliser le SparkFun Top pHAT pour prototyper l'apprentissage machine sur votre Raspberry Pi 4, NVIDIA Jetson, Google Coral ou un autre ordinateur monocarte ? Sans aucun doute! Le système pHAT SparkFun Top prend en charge les interactions d'apprentissage machine, notamment la commande vocale avec microphones et haut-parleurs de bord, l'affichage graphique pour la rétroaction de contrôle de la caméra et l'accès sans entrave au connecteur de la caméra RPi. De plus, vous pouvez utiliser les boutons programmables, la manette et la DEL RVB pour les E/S définies par l'utilisateur, l'interaction dynamique du système ou l'affichage de l'état du système.Pouvez-vous l'utiliser comme interface pour présenter votre projet à l'écosystème SparkFun Qwiic ? En effet ! En plus de toutes les fonctionnalités précédentes, nous avons également inclus un connecteur Qwiic pour permettre une intégration facile sur I2C. Des milliards de combinaisons de cartes compatibles Qwiic sont à votre disposition pour développer les capacités du SparkFun Top pHAT.Avec toute l'interaction E/S sur cette carte et le manque de soudure nécessaire pour se mettre en marche, le SparkFun Top pHAT est le complément d'apprentissage machine fondamental pour Raspberry Pi ou tout 2x20 GPIO SBC !Caractéristiques :Un pHAT Raspberry Pi qui se concentre sur l'interaction utilisateur avec un SBC/RPi.Soutien des interactions d'apprentissage automatiqueCommande vocale (microphones, haut-parleurs)Affichage graphique sur TFT couleur 2.4''Deux boutons programmables pour les E/S définies par l'utilisateurJoystick programmable – pour une interaction dynamique avec le système (menus GUI, conduite de robot).DEL RVB programmables – pour l'état du système, affichage.N'empêche pas l'accès à la caméra RPi ou au connecteur d'affichageInterrupteur marche/arrêt pour Rpi.Prend en charge l'accès à l'écosystème Qwiic SparkFunDestiné à être au sommet d'une pile pHAT - pas de broches pour empiler sur le dessus de cette carte. C'est le Top pHAT!

    € 49,95

    Membres € 44,96

  • NetPi – Ethernet HAT for Raspberry Pi Pico

    SB Components NetPi – Ethernet HAT for Raspberry Pi Pico

    NetPi est la solution parfaite pour les besoins de connectivité de votre Raspberry Pi Pico. Il s'agit d'un HAT Ethernet qui permet à votre Pico de se connecter facilement à Internet. Avec la prise en charge de divers protocoles Internet tels que TCP, UDP, WOL sur UDP, ICMP, IPv4, etc., NetPi peut créer des appareils IoT, des robots, des systèmes domotiques et des systèmes de contrôle industriel. Il dispose de quatre SOCKET indépendants qui peuvent être utilisés simultanément et prend également en charge les commandes sans SOCKET telles que ARP-Request et PING-Request. L'Ethernet HAT est équipé d'un PHY Ethernet 10Base-T/100Base-TX et d'une négociation automatique pour un duplex intégral et semi-duplex avec des connexions basées sur 10 et 100. NetPi est idéal pour diverses applications. Avec NetPi, vous pouvez désormais prendre en charge les protocoles Internet câblés tels que TCP, UDP, ICMP, etc. Profitez de quatre sockets indépendants pour des connexions simultanées et exécutez des commandes sans socket comme ARP-Request et PING-Request. NetPi prend également en charge le mode de mise hors tension Ethernet et le réveil sur LAN via UDP pour économiser de l'énergie. NetPi est équipé d'un PHY Ethernet 10Base-T/100Base-TX et prend en charge la négociation automatique pour un duplex intégral et semi-duplex avec des connexions basées sur 10 et 100. L'appareil dispose de LED d'indicateur de réseau pour le full/half duplex, la liaison, la vitesse 10/100 et l'état actif. Caractéristiques Compatible avec Raspberry Pi Pico (W) RJ45 intégré avec transformateur : port Ethernet Prend en charge 4 SOCKETS indépendants simultanément Prise en charge des protocoles TCP/IP câblés : TCP, UDP, ICMP, IPv4, ARP, IGMP, PPPoE Mode de mise hors tension Ethernet et Wake on LAN sur UDP pour économiser l'énergie Ethernet PHY 10Base-T/100Base-TX avec négociation automatique pour full et half duplex avec connexions 10 et 100 LED d'indicateur de réseau pour full/half duplex, liaison, vitesse 10/100 et état actif Breakout à broches RP2040 avec embase à broches femelle pour d'autres blindages et interfaces périphériques Écran LCD TFT 1,3' (240 x 240) et joystick à 5 directions pour une expérience utilisateur Interface SPI, I²C, UART Dimensions : 74,54 x 21,00 mm Applications Appareils Internet des objets (IoT) Systèmes d'automatisation et de contrôle industriels Domotique et systèmes de maison intelligente Systèmes de surveillance à distance et d'enregistrement de données Robotique et systèmes autonomes Systèmes de capteurs en réseau Systèmes d'automatisation des bâtiments et de gestion de l'énergie Systèmes de sécurité et de contrôle d'accès Téléchargements GitHub

    € 24,95

    Membres € 22,46

  • Adafruit BrainCraft HAT – Machine Learning for Raspberry Pi 4

    Adafruit Adafruit BrainCraft HAT – Machine Learning for Raspberry Pi 4

    Caractéristiques: Écran TFT IPS de 1,54 pouces avec une résolution de 240 x 240 pouvant afficher du texte ou des vidéos Ports de haut-parleurs stéréo pour la lecture audio – synthèse vocale, alertes ou pour créer un assistant vocal. Sortie casque stéréo pour la lecture audio via un système stéréo, des écouteurs ou des haut-parleurs amplifiés. Entrée microphone stéréo - parfaite pour créer vos propres assistants domestiques intelligents Deux connecteurs JST STEMMA 3 broches pouvant être utilisés pour connecter plus de boutons, un relais, ou même quelques NeoPixels ! Le port I2C plug-and-play STEMMA QT peut être utilisé avec n'importe laquelle des cartes Adafruits 50+ I2C STEMMA QT ou peut être utilisé pour se connecter aux appareils Grove I2C avec un câble adaptateur. Joystick 5 directions + bouton pour l'interface utilisateur et le contrôle. Trois LED RVB DotStar pour un retour LED coloré. Le port STEMMA QT signifie que vous pouvez connecter des capteurs d'image thermique comme le Panasonic Grid-EYE ou le MLX90640. Les caméras sensibles à la chaleur peuvent être utilisées comme détecteur de personne, même dans l'obscurité ! Un accéléromètre externe peut être fixé pour la détection de gestes ou de vibrations, tels que les projets de maintenance prédictive de machines/industries. Attention : un Raspberry Pi 4 n'est pas inclus.

    € 49,95

    Membres € 44,96

  • Dernier stock ! SparkFun GPS-RTK Dead Reckoning pHAT for Raspberry Pi

    SparkFun SparkFun GPS-RTK pHAT à l'estime pour Raspberry Pi

    2 en stock

    « Le module ZED-F9R est un récepteur GNSS à moteur F9 de 184 canaux, ce qui signifie qu’il peut recevoir des signaux des constellations GPS, GLONASS, Galileo et BeiDou avec une précision d’environ 0,2 mètre! C’est exact; une telle précision peut être obtenue avec une solution de navigation RTK lorsqu’elle est utilisée avec une source de correction. Notez que le ZED-F9R ne peut fonctionner qu’en tant que rover, vous devrez donc vous connecter à une station de base. Le module prend en charge la réception simultanée de quatre systèmes GNSS. La combinaison de mesures GNSS et de capteurs 3D intégrés sur le ZED-F9R fournit des taux de positionnement précis et en temps réel allant jusqu’à 30 Hz. Comparé aux autres modules GPS, ce pHAT optimise la précision de position dans les villes denses ou les zones couvertes. Même dans de mauvaises conditions de signalisation, un positionnement continu est assuré en milieu urbain et est également disponible en cas de perte complète de signal (par ex. tunnels courts et garages de stationnement). Le ZED-F9R est la solution ultime pour les applications robotiques autonomes qui nécessitent un positionnement précis dans des conditions difficiles. Ce récepteur u-blox prend en charge quelques protocoles série. Par défaut, nous avons choisi d’utiliser l’UART série du Raspberry Pi pour communiquer avec le module. Avec des en-têtes pré-moulés, aucune soudure n’est nécessaire pour empiler le pHAT sur un Raspberry Pi, NVIDIA Jetson Nano, Google Coral, ou tout ordinateur à une seule carte avec le facteur de forme 2x20. Nous avons également sorti quelques broches espacées de 0,1' du récepteur u-blox. Un connecteur Qwiic est également ajouté au cas où vous auriez besoin de connecter un périphérique compatible Qwiic. Les produits GPS à base de U-blox sont configurables en utilisant le populaire mais dense, programme de fenêtres appelé u-centre. De nombreuses fonctions différentes peuvent être configurées sur le ZED-F9R : taux de bauds, taux de mise à jour, géolocalisation, détection de spoofing, interruptions externes, SBAS/D-GPS, etc. Le GPS pHAT SparkFun ZED-F9R est également équipé d’une batterie rechargeable intégrée qui alimente le CCF sur le ZED-F9R. Cela réduit le délai jusqu’à la première correction d’un démarrage à froid (~24 s) à un démarrage à chaud (~2 s). La batterie maintiendra les données d’orbite RTC et GNSS sans être connectée à l’alimentation pendant beaucoup de temps. Caractéristiques : 1 connecteur Qwiic Connecteur U.FL intégré pour une utilisation avec une antenne de votre choix Réception simultanée de GPS, GLONASS, Galileo et BeiDou Récepteur GNSS 184 canaux Reçoit les bandes L1C/A et L2C Précision de la position horizontale : 0,20 m avec RTK Vitesse de navigation maximale : jusqu’à 30 Hz Temps pour la première correction Froid : 24 s Chaud : 2 s Limites opérationnelles Max G : 4 G Altitude maximale : 50 km Vitesse maximale : 500 m/s Précision de la vitesse : 0,5 m/s Précision de cap : 0,2 degré Accéléromètre et gyroscope intégrés Précision d’impulsion de temps : 30ns Tension : 5 V ou 3,3 V, mais toute la logique est de 3,3 V Courant : ~85 mA à ~130 mA (varie selon les constellations et l’état de suivi) Logiciel configurable Géoclôture Odomètre Détection de mystification Interruption externe Contrôle de la goupille Mode de faible puissance Prend en charge les protocoles NMEA, UBX et RTCM sur UART'

    2 en stock

    € 299,00

    Membres € 269,10

  • Sequent Microsystems Smart Fan HAT for Raspberry Pi

    Chapeau de ventilateur intelligent Sequent Microsystems pour Raspberry Pi

    Raspberry Pi 4 a été bien accueilli par les passionnés de Pi pour sa puissance de traitement accrue. Cependant, cela a eu un prix. Le RPi 4 peut consommer jusqu'à 3 ampères, ce qui signifie qu'il doit dissiper 15 W de puissance. Le refroidissement du Raspberry Pi est indispensable. Du dissipateur thermique passif le plus simple, en passant par les ventilateurs soufflants élaborés et même une idée exotique refroidie à l'eau, de nombreuses options sont disponibles. Le Smart Fan a le facteur de forme du Raspberry Pi HAT. Son propre processeur 32 bits reçoit les commandes du Raspberry Pi via l'interface I²C. Une alimentation élévateur convertit le 5 V fourni par Raspberry Pi en 12 V, assurant un contrôle précis de la vitesse. Grâce à la modulation de largeur d'impulsion, il alimente le ventilateur juste assez pour maintenir une température constante du processeur Raspberry Pi. Le Smart Fan préserve toutes les broches GPIO, permettant d'empiler n'importe quel nombre de cartes sur le Raspberry Pi. Si une autre carte d'extension doit dissiper de l'énergie, un Smart Fan secondaire peut être ajouté à la pile. Montage sur rail DIN Avec plusieurs cartes supplémentaires, le Smart Fan peut être installé sur le rail DIN, pour des applications industrielles robustes. Cavalier de niveau de pile Deux ventilateurs intelligents peuvent être installés sur chaque Raspberry Pi. L'hypothèse est que vous avez une carte supplémentaire dans la pile qui nécessite un refroidissement. La face inférieure du Smart Fan comporte un cavalier qui doit être installé sur le deuxième ventilateur, afin que le Raspberry Pi puisse différencier les deux adresses I²C. Caractéristiques Ventilateur 40 x 40 x 10 mm avec débit d'air de 6 CFM Alimentation 12 V élévateur pour un contrôle précis de la vitesse du ventilateur Le contrôleur PWM module le ventilateur pour maintenir une température Pi constante Consommation inférieure à 100 mA Empilable sur lui-même, 2 ventilateurs peuvent être ajoutés au Raspberry Pi Entièrement empilable, permet d'ajouter d'autres cartes au Raspberry Pi Utilise uniquement l'interface I²C, laisse la pleine utilisation de toutes les broches GPIO Super silencieux et efficace Inclus CHAPEAU Han intelligent Ventilateur 40 x 40 x 10 mm avec vis de montage Le matériel de montage Téléchargements Guide de l'utilisateur Schéma du matériel Open Source Dessin CAO 2D Ligne de commande Bibliothèques Python Nœuds Nœud-Rouge

    € 24,95

    Membres € 22,46

  • SparkFun Auto pHAT for Raspberry Pi

    SparkFun SparkFun Auto pHAT pour Raspberry Pi

    La commande servo est basée sur le servomoteur pHAT SparkFun, et grâce à ses capacités I2C, cet élément ajouté PWM sauve les broches GPIO du Raspberry Pi, il vous permet de les utiliser à d’autres fins. Nous avons également fourni un connecteur Qwiic pour une interface facile avec le bus I2C en utilisant le système Qwiic. Que vous utilisiez le Auto pHAT avec un Raspberry Pi, NVIDIA, Jetson Nano, Google Coral ou un autre SBC, il constitue un complément robotique unique et une carte avec un GPIO 2x20. La commande du moteur CC provient du même système de ports moteur 4245 PSOC et 2 canaux utilisé sur le pilote de moteur SparkFun Qwiic. Ceci fournit 1.2A d’entraînement à l’état stationnaire par canal (1.5A de crête) et 127 niveaux de puissance d’entraînement CC. Le SparkFun Auto pHAT prend également en charge jusqu’à deux encodeurs moteurs grâce à l’ATTINY84A embarqué pour fournir un mouvement plus précis à votre création ! De plus, l’ICM-20948 9DOF IMU Auto pHAT répond à tous vos besoins de détection de mouvement. Cela permet à votre robot d’accéder au gyroscope 3 axes avec quatre plages sélectionnables, à l’accéléromètre 3 axes, à nouveau avec quatre plages sélectionnables et à l’magnétomètre 3 axes avec un FSR de 4900µT. L’alimentation du SparkFun Auto pHAT peut être fournie via un connecteur USB-C ou une alimentation externe. Cela alimentera soit les moteurs seulement, soit les moteurs et le Raspberry Pi qui est connecté à la HAT. Nous avons même ajouté des circuits de protection électrique à la conception pour éviter d’endommager les sources d’énergie. Caractéristiques : 4245 ports moteur PSOC et 2 canaux programmables à l’aide de la bibliothèque Qwiic Le système embarqué ATTINY84A prend en charge jusqu’à deux encodeurs de moteur CC Passage 5v depuis RPi IMU embarqué ICM-20948 9DOF pour la détection de mouvement accessible via la bibliothèque Qwiic Commande PWM pour jusqu’à quatre servomoteurs Connecteur Qwiic pour l’expansion vers l’écosystème Qwiic SparkFun Conçu pour l’empilage, la prise en charge complète des en-têtes et la possibilité d’utiliser des TASP supplémentaires Accès sans entrave au connecteur de caméra RPi et au connecteur d’affichage. USB-C pour l’alimentation du rail 5V (moteurs/servos/alimentation arrière Pi) Entrées d’alimentation externes en panne pour les collecteurs PTH

    € 29,95

    Membres € 26,96

  •  -5% OzzMaker BerryGPS-GSM for Raspberry Pi

    OzzMaker OzzMaker BerryGPS-GSM pour Raspberry Pi

    Ajoutez une connectivité GSM globale et un suivi GPS à votre projet avec un BerryGPS-GSM. Il s'agit d'un module tout-en-un qui peut fournir à votre projet un suivi de localisation et des services GSM tels que des données, des textes et des SMS. Il se présente sous le même format qu'un Raspberry Pi Zero, ce qui le rend agréable et compact lorsqu'il est utilisé avec un Raspberry Pi Zero. Les deux principaux composants qui rendent cette carte géniale sont : Module GPS uBlox CAM-M8 (même GPS que celui trouvé sur BerryGPS-IMU V3 ) uBlox SARA-U201 GSM pour la connectivité GSM, qui a une couverture mondiale. La collaboration de ces deux modules permet d'obtenir une position GPS en quelques secondes, à l'aide du GPS assisté. En règle générale, un module GPS peut prendre quelques minutes pour obtenir le Time To First Fix (TTFF), voire plus si vous êtes dans des zones bâties. En effet, l'Almanach doit être téléchargé à partir des satellites avant qu'une position GPS puisse être acquise et seule une petite partie de l'Almanach est envoyée dans chaque mise à jour GPS. Le GPS assisté accélère considérablement ce processus en téléchargeant les éphémérides, l'almanach, l'heure précise et l'état des satellites sur le réseau, ce qui entraîne un TTTF plus rapide, en quelques secondes. Le fonctionnement du GPS sur un smartphone est très similaire. BerryGPS-GSM a été conçu pour le Raspberry Pi Zero, mais il fonctionne avec toutes les versions du Raspberry Pi. Nous avons créé un connecteur PCB USB vers USB à utiliser avec un Raspberry Pi Zero, conçu pour rendre votre projet plus compact. Fiches techniques spécifiques au GPS CAM-M8-FW3_DataSheet_(UBX-15031574) CAM-M8-FW3_HardwareIntegrationManual_(UBX-15030063) Fiches techniques spécifiques au GSM Fiche technique SARA-U201 (UBX-13005287) SARA-U201 SysIntegrationManual_(UBX-13000995) u-blox CEL_ATCommands_(UBX-13002752)

    € 99,95€ 94,95

    Membres identique

  • Seeed Studio GrovePi+ Add-on Board for Raspberry Pi

    Seeed Studio Carte complémentaire Seeed Studio GrovePi+ pour Raspberry Pi

    Le GrovePi+ est un système modulaire et facile à utiliser pour le piratage matériel avec le Raspberry Pi, pas besoin de soudure ni de planche à pain : branchez vos capteurs Grove et démarrez directement la programmation. Grove est une collection facile à utiliser de plus de 100 modules plug-and-play peu coûteux qui détectent et contrôlent le monde physique. En connectant les capteurs Grove au Raspberry Pi, cela renforce votre Pi dans le monde physique. Avec des centaines de capteurs parmi les familles Grove, les possibilités d'interaction sont infinies. Configuration en 4 étapes simples Glissez la carte GrovePi+ sur votre Raspberry Pi Connectez les modules Grove à la carte GrovePi+ Téléchargez votre programme sur Raspberry Pi Commencez à exploiter les données mondiales Attention : la carte Raspberry Pi n'est pas incluse

    € 49,95

    Membres € 44,96

  • Raspberry Pi 5 M.2 HAT+

    Raspberry Pi Foundation Raspberry Pi 5 M.2 HAT+

    Précommander

    Le Raspberry Pi M.2 HAT+ vous permet de connecter des périphériques M.2 tels que des disques NVMe et des accélérateurs AI à l'interface PCIe 2.0 du Raspberry Pi 5, prenant en charge un transfert de données rapide (jusqu'à 500 Mo/s) vers et des disques NVMe et autres accessoires PCIe. Raspberry Pi M.2 HAT+ prend en charge les appareils dotés du connecteur M.2 M key edge, dans les formats 2230 et 2242. Il est capable de fournir jusqu'à 3 A aux appareils M.2 connectés. Fonctionnalités Prend en charge l'interface PCIe 2.0 à voie unique (taux de transfert maximal de 500 Mo/s) Prend en charge les appareils qui utilisent le connecteur Key Edge M.2 M Prend en charge les appareils au format 2230 ou 2242 Capable de fournir jusqu'à 3 A aux appareils M.2 connectés Comprend des voyants d'alimentation et d'activité Fourni avec un câble plat, un embase d'empilage de 16 mm, des entretoises et des vis filetées, ainsi qu'une vis moletée à double bride pour fixer et soutenir le périphérique M.2

    Précommander

    € 13,95

    Membres identique

  • Pimoroni Breakout Garden for Raspberry Pi (I²C)

    Pimoroni Pimoroni Breakout Garden pour Raspberry Pi (I²C)

    Grâce à ses six emplacements robustes, Breakout Garden permet aux utilisateurs de simplement brancher et jouer avec diverses petites cartes de dérivation. Insérez simplement une ou plusieurs planches dans les emplacements du Breakout Garden HAT et vous êtes prêt à partir. Les mini-breakouts se sentent suffisamment en sécurité dans les fentes des connecteurs de bord et il est très peu probable qu'elles tombent. Il y a un certain nombre de broches utiles en haut de Breakout Garden, qui vous permettent de connecter d'autres appareils et de les intégrer dans votre projet. Vous ne devriez pas vous inquiéter si vous insérez une carte dans le mauvais sens grâce à la protection contre l'inversion de polarité fournie. Peu importe non plus l'emplacement que vous utilisez pour chaque dérivation, car l'adresse I²C de la dérivation sera reconnue par le logiciel et il les détectera correctement au cas où vous les déplaceriez. Caractéristiques Six emplacements de connecteur de bord robustes pour les sorties Pimoroni Pas de 0,1", connecteurs à 5 broches Broches cassées (bande 1 × 10 ou embase mâle incluse) Entretoises (M2,5, hauteur 10 mm) incluses pour maintenir votre Breakout Garden en toute sécurité Protection contre l'inversion de polarité (intégrée aux breakouts) Carte format HAT Compatible avec Raspberry Pi 3 B+, ​​​​3, 2, B+, A+, Zero et Zero W Il est suggéré d'utiliser les entretoises incluses pour fixer Breakout Garden à votre Raspberry Pi. Logiciel Breakout Garden ne nécessite aucun logiciel propre, mais chaque breakout que vous utiliserez aura besoin d'une bibliothèque Python. Sur la page GitHub de Breakout Garden, vous trouverez un programme d'installation automatique, qui installera le logiciel approprié pour une évasion donnée. Il existe également quelques exemples qui vous montrent ce que vous pouvez faire d'autre avec Breakout Garden.

    € 19,95

    Membres € 17,96

Le fait que les ordinateurs Raspberry Pi soient extrêmement populaires ressort clairement des 34 millions d’unités vendues. Mais le fait que les ordinateurs et la technologie Pi s’étendent dans l’espace est probablement nouveau pour vous.

Qu’est-ce qu’un Raspberry PI HAT ?

Les Raspberry PI HAT (Hardware Attached on Top) sont un module complémentaire pour votre carte mère standard . Si vous souhaitez tirer le meilleur parti de vos projets Raspberry, les HAT sont exactement ce que vous recherchez. Vous pouvez facilement brancher les HAT grâce au connecteur GPIO à 40 broches. Cela élargit non seulement le matériel, mais également les possibilités dont vous disposez avec ce matériel. Si vous souhaitez tirer le meilleur parti du Rasberry Pi , les HAT sont indispensables.

Avant l'introduction du HAT en 2014, de nombreux modules complémentaires matériels avaient déjà été développés pour les mini-ordinateurs. C'est la raison pour laquelle Raspberry a développé son propre standard qui devrait faciliter la tâche des créateurs et des programmeurs.

Parce que connecter du matériel externe au Raspberry Pi nécessitait pas mal d’actions, cela appartient au passé avec l’arrivée du HAT. Le HAT garantit que le bon pilote est automatiquement reconnu, chargé et connecté.

Pour quoi pouvez-vous utiliser un Raspberry Pi HATS

Les possibilités de la technologie et du matériel Raspberry étaient déjà grandes, mais depuis l'introduction de HATS en 2014, elles sont devenues encore plus grandes. Si vous étendez votre carte mère Raspberry avec un HAT, vous disposerez également des fonctionnalités standards de votre modèle Pi

  • Obtenez plus d'options audio
  • Obtenez plus d'options d'affichage
  • Ou obtenez plus d'options de moteurs et de servos

Avec les HAT d'Elektor, vous pouvez combiner à l'infini et rendre votre projet meilleur, plus simple et plus convivial.

La gamme Framboise chez Elektorstore

En tant que revendeur agréé des produits Raspberry Pi, Elektorstore est la boutique en ligne aux Pays-Bas pour acheter des produits officiels Raspberry. Parce qu'il n'y a pas d'intermédiaire entre l'usine et notre boutique en ligne, nous pouvons proposer notre gamme à des prix avantageux.

Connexion

Mot de passe oublié ?

Vous n'avez pas encore de compte ?
Créer un compte