La carte de développement mikroBUS SparkFun RP2040 est une plate-forme hautes performances à faible coût avec des interfaces numériques flexibles dotées du microcontrôleur RP2040 de la Raspberry Pi Foundation. Outre la disposition des broches Thing Plus ou Feather PTH, la carte comprend également un emplacement pour carte microSD, une mémoire flash de 16 Mo (128 Mbits), un connecteur de batterie monocellulaire JST (avec un circuit de charge et un capteur de jauge de carburant), une LED RVB WS2812 adressable. , broches JTAG PTH, quatre trous de montage (vis 4-40), nos connecteurs Qwiic signature et une prise mikroBUS. La norme mikroBUS a été développée par MikroElektronika. Semblable aux interfaces Qwiic et MicroMod, la prise mikroBUS fournit une connexion standardisée pour les cartes Click supplémentaires à connecter à une carte de développement et est composée d'une paire d'embases femelles à 8 broches avec une configuration de broches standardisée. Les broches se composent de trois groupes de broches de communication (SPI, UART et I²C), de six broches supplémentaires (PWM, interruption, entrée analogique, réinitialisation et sélection de puce) et de deux groupes d'alimentation (3,3 V et 5 V).
Le RP2040 est pris en charge avec les environnements de développement multiplateformes C/C++ et MicroPython, y compris un accès facile au débogage d'exécution. Il intègre des routines de démarrage UF2 et de virgule flottante dans la puce. Bien que la puce dispose d'une grande quantité de RAM interne, la carte comprend 16 Mo supplémentaires de mémoire flash QSPI externe pour stocker le code du programme. Le RP2040 contient deux processeurs ARM Cortex-M0+ (jusqu'à 133 MHz) et propose :
264 Ko de SRAM intégrée dans six banques
6 IO dédiées pour SPI Flash (supportant XIP) 30 GPIO multifonctions :
Matériel dédié aux périphériques couramment utilisés
E/S programmables pour une prise en charge étendue des périphériques
Quatre canaux ADC 12 bits avec capteur de température interne (jusqu'à 0,5 MSa/s)
Fonctionnalité hôte/périphérique USB 1.1
Caractéristiques (Carte de développement SparkFun RP2040 mikroBUS)
Microcontrôleur RP2040 de la Raspberry Pi Foundation 18 broches GPIO multifonctions
Quatre canaux ADC 12 bits disponibles avec capteur de température interne (500 kSa/s)
Jusqu'à huit PWM à 2 canaux
Jusqu'à deux UART
Jusqu'à deux bus I²C
Jusqu'à deux bus SPI
Disposition des broches Thing Plus (ou Feather) :
28 broches PTH
Connecteur USB-C : Fonctionnalité hôte/périphérique USB 1.1
Connecteur JST 2 broches pour une batterie LiPo (non incluse) : Circuit de charge 500 mA
Connecteur JST Qwiic à 4 broches
LED :
PWR - Indicateur d'alimentation rouge 3,3 V
CHG - Indicateur jaune de charge de la batterie
25 - LED bleue d'état/test ( GPIO 25 )
WS2812 - LED RVB adressable ( GPIO 08 )
Boutons:
Boot
Reset
Broches JTAG PTH
Mémoire flash QSPI de 16 Mo
Emplacement pour carte µSD
Prise mikroBUS
Dimensions : 3,7' x 1,2'
Quatre trous de montage : Compatible vis 4-40
Téléchargements
Schématique
Fichiers Aigle
Dimensions de la carte
Guide de connexion
Page d'informations Qwiic
Référentiel matériel GitHub
Cet ensemble contient 3 buses pour les stations de reprise à air chaud telles que ZD-8922 ou ZD-8968.
Inclus
1x Buse à air chaud 79-3911
1x Buse à air chaud 79-3912
1x Buse à air chaud 79-3913
Le Challenger RP2040 WiFi est un petit ordinateur embarqué équipé d'un module WiFi, dans le format populaire Adafruit Feather. Il est basé sur un microcontrôleur RP2040 de la Fondation Raspberry Pi, qui est un Cortex-M0+ à double cœur pouvant fonctionner à une fréquence de 133 MHz. Le RP2040 est associé à une mémoire flash haute vitesse de 8 Mo capable de fournir des données à la vitesse maximale. La mémoire flash peut être utilisée à la fois pour stocker des instructions pour le microcontrôleur et des données dans un système de fichiers. Le fait de disposer d'un système de fichiers facilite le stockage des données dans une approche structurée et facile à programmer. Le module peut être alimenté par une batterie au lithium-polymère connectée par un connecteur standard de 2,0 mm sur le côté de la carte. Un circuit de charge interne vous permet de charger votre batterie rapidement et en toute sécurité. L'appareil est livré avec une résistance de programmation qui règle le courant de charge à 250 mA. Cette résistance peut être remplacée par l'utilisateur pour augmenter ou diminuer le courant de charge, en fonction de la batterie utilisée. La section WiFi de cette carte est basée sur la puce ESP8285 d'Espressif qui est en fait une ESP8266 avec 1 Mo de mémoire flash intégrée dans la puce, ce qui en fait un module WiFi complet ne nécessitant que très peu de composants externes. La ESP8285 est connectée au microcontrôleur par un port série et le fonctionnement est contrôlé par un ensemble de commandes AT standardisées. Spécifications Microcontrôleur RP2040 du Raspberry Pi (Cortex-M0+ double cœur 133 MHz) SPI Un canal SPI I²C Un canal I²C UART Un canal UART (le second UART est utilisé pour la puce WiFi) Entrées analogiques 4 entrées analogiques Contrôleur WLAN ESP8285 d'Espressif (160 MHz single-core Tensilica L106) Mémoire flash 8 Mo, 133 MHz Mémoire SRAM 264 Ko (divisé en 6 banques) Contrôleur USB 2.0 Jusqu'à 12 MBit/s à pleine vitesse (USB 1.1 PHY intégré) Connecteur de batterie JST Pas de 2,0 mm Chargeur LiPo intégré Courant de charge standard de 250 mA LED NeoPixel intégrée LED RVB Dimensions de l'appareil 51 x 23 x 3,2 mm Poids 9 g Téléchargements Fiche technique Fiches de conception Errata des produits
Conçu dans un souci de commodité et de sécurité, l'Ardi RFID Shield est basé sur le module EM-18, fonctionnant à une fréquence de 125 KHz. Ce bouclier vous permet d'intégrer facilement la technologie RFID (Radio Frequency Identification) dans vos projets, permettant des systèmes de contrôle d'accès transparents et d'identification.
Équipé d'un puissant relais opto-isolé à 1 canal, l'Ardi RFID Shield offre une solution de commutation fiable avec une valeur nominale CC maximale de 30 V et 10 A, ainsi qu'une valeur nominale CA de 250 V et 7 A. Que vous ayez besoin de contrôler des lumières , moteurs ou autres appareils haute puissance, ce bouclier fournit la fonctionnalité nécessaire.
De plus, l'Ardi RFID Shield est doté d'un buzzer intégré qui peut être utilisé pour le retour audio, permettant une interaction utilisateur et un retour système améliorés. Avec les LED à 2 indications intégrées, vous pouvez facilement surveiller l'état de détection de la carte RFID, l'alimentation électrique et l'activation du relais, fournissant des repères visuels clairs pour le fonctionnement de votre projet.
La compatibilité est essentielle et l'Ardi RFID Shield garantit une intégration transparente avec la plateforme Arduino Uno. Associé à un module RFID en lecture seule, ce bouclier ouvre un monde de possibilités pour des applications telles que les systèmes de contrôle d'accès, le suivi des présences, la gestion des stocks, etc.
Caractéristiques
Petit module compact RFID EM18 125 kHz intégré
Relais embarqués de haute qualité Relais avec borne à vis et interfaces NO/NC
Blindage compatible avec les MCU 3,3 V et 5 V
Alimentation à 3 LED intégrée, état marche/arrêt du relais et état de numérisation RFID
Buzzer multi-tonalité intégré pour les alertes audio
Se monte directement sur ArdiPi, Ardi32 ou d'autres cartes compatibles Arduino
Spécifications
Fréquence de fonctionnement RFID : 125 kHz
Distance de lecture : 10 cm, selon TAG
Antenne intégrée
Tension de commutation maximale du relais : 250 V AC/30 V DC
Courant de commutation maximum du relais : 7 A/10 A
Le kit de démarrage Pimoroni Explorer est un terrain de jeu d'aventure électronique pour l'informatique physique basé sur la puce RP2350. Il comprend un écran LCD de 2,8 pouces, un haut-parleur, une mini planche à pain et bien plus encore. C'est idéal pour bricoler, expérimenter et construire de petits prototypes.
Caractéristiques
Mini maquette pour le câblage des composants
En-têtes de servo
Entrées analogiques
Haut-parleur intégré
De nombreuses entrées/sorties à usage général
Connecteurs pour attacher des câbles crocodiles
Connecteurs Qw/ST pour connecter des répartitions I²C
Spécificités
Alimenté par RP2350B (Dual Arm Cortex-M33 fonctionnant jusqu'à 150 MHz avec 520 Ko de SRAM)
16 Mo de mémoire flash QSPI compatible XiP
Écran LCD IPS de 2,8 pouces (320 x 240 pixels)
CI pilote : ST7789V
Luminance : 250 cd/m²
Zone active : 43,2 x 57,5 mm
Connecteur USB-C pour la programmation et l'alimentation
Mini-planche à pain
Haut-parleur piézo
6 commutateurs contrôlables par l'utilisateur
Boutons de réinitialisation et de démarrage
En-têtes GPIO faciles d'accès (6 GPIO et 3 ADC, plus alimentation et mise à la terre de 3,3 V)
6 bornes à pince crocodile (3 ADC, plus une alimentation et une masse de 3,3 V)
4 sorties servo à 3 broches
2 connecteurs Qw/ST (Qwiic/STEMMA QT)
Connecteur JST-PH à 2 broches pour ajouter une batterie
Emplacement pour cordon !
Comprend 2 pieds de support de bureau
Entièrement assemblé (aucune soudure requise)
Programmable avec C/C++ ou MicroPython
Inclus
1x Pimoroni Explorer
1x Multi-Sensor Stick : une nouvelle suite de super capteurs tout-en-un sophistiquée pour la détection de l'environnement, de la lumière et des mouvements
Sélection de LED de différentes couleurs avec lesquelles clignoter (notamment rouge, jaune, vert, bleu, blanc et RVB)
1x Ootentiomètre (pour les divertissements analogiques)
3x Interrupteurs de 12 mm avec capuchons de couleurs différentes
2x Servos à rotation continue
2x Roues de 60 mm à fixer sur vos servos
1x Support de pile AAA (piles non incluses)
1x Velcro pour coller le support de batterie à l'arrière de l'Explorer
20 Câbles de connexion broche à broche et 20x broche à prise pour établir des connexions sur votre maquette
1x Câble Qw/ST pour brancher le Multi-Sensor Stick
1x Câble USB-C en silicone
Téléchargements
GitHub
Schematic
La flexibilité du module Artemis commence avec le Core Arduino de SparkFun. Vous pouvez programmer et utiliser le module Artemis comme vous le feriez pour un Uno ou tout autre Arduino. Le premier clignotement est à seulement 5 minutes ! Nous avons construit le Core à partir de zéro, le rendant rapide et aussi léger que possible.Vient ensuite le module lui-même. Mesurant 10 mm x 15 mm, le module Artemis dispose de tous les circuits de support dont vous avez besoin pour utiliser le fantastique processeur Ambiq Apollo3 dans votre prochain projet. Nous sommes fiers de pouvoir dire que le module SparkFun Artemis est le premier module matériel open-source avec les fichiers de conception librement et facilement disponibles. Nous avons soigneusement conçu le module de sorte que la mise en œuvre d'Artemis dans votre conception peut être faite avec des PCB à 2 couches à bas coût et 8mil trace / espace.Fabriqué aux États-Unis sur la ligne de production Boulder de SparkFun, le module Artemis est conçu pour les produits de qualité grand public. Cela différencie vraiment l'Artemis de ses confrères Arduino. Êtes-vous prêt à faire évoluer votre produit? L'Artemis évoluera avec vous au-delà de l'empreinte Uno et de l'IDE Arduino. De plus, l'Artemis dispose d'une couche d'abstraction matérielle HAL avancée (hardware abstraction layer), permettant aux utilisateurs de pousser l'architecture moderne Cortex-M4F à sa limite.Le module SparkFun Artemis est entièrement certifié FCC/IC/CE et est disponible en quantité complète de bande et de bobine. Avec 1M flash et 384k de RAM, vous aurez amplement de place pour votre code. Le module Artemis fonctionne à 48MHz avec un mode turbo de 96MHz disponible et avec Bluetooth pour démarrer !
'À bord de chaque moto:bit se trouvent plusieurs broches d’E/S, ainsi qu’un connecteur Qwiic vertical, capable de brancher des servomoteur, des capteurs et d’autres circuits. En appuyant sur le bouton, vous pouvez faire bouger votre micro:bit ! Le moto:bit se connecte au micro:bit via un SMD mis à jour, connecteur de bord en haut de la carte, ce qui facilite la configuration. Cela crée un moyen pratique d’échanger micro:bits pour la programmation tout en fournissant des connexions fiables à toutes les différentes broches sur le micro:bit. Nous avons également inclus un connecteur d’alimentation coaxial de base sur la moto:bit qui est capable de fournir de l’énergie à tout ce que vous connectez à la carte de support. Caractéristiques : Connecteur Edge plus fiable pour une utilisation facile avec le micro:bit Full H-Bridge pour la commande de deux moteurs Commande des servomoteurs Connecteur Qwiic vertical Port I2C pour étendre les fonctionnalités Gestion de l’alimentation et de la batterie à bord pour le micro:bit'
Le Portenta C33 est un puissant système-sur-module conçu pour les applications Internet des objets (IdO) à faible coût. Basé sur le microcontrôleur R7FA6M5BH2CBG de Renesas, cette carte partage le même facteur de forme que le Portenta H7 et est rétrocompatible avec celui-ci, la rendant entièrement compatible avec tous les shields et modules Portenta grâce à ses connecteurs haute densité.
En tant que dispositif économique, le Portenta C33 est un excellent choix pour les développeurs cherchant à créer des dispositifs et applications IdO avec un budget limité. Que vous construisiez un appareil pour la maison intelligente ou un capteur industriel connecté, le Portenta C33 offre la puissance de traitement et les options de connectivité nécessaires pour mener à bien votre projet.
Déployer rapidement des projets alimentés par l'IA devient simple et rapide avec le Portenta C33, en tirant parti d'une vaste gamme de bibliothèques logicielles prêtes à l'emploi et de croquis Arduino disponibles, ainsi que de widgets qui affichent en temps réel les données sur les tableaux de bord basés sur le cloud Arduino IoT.
Caractéristiques
Idéal pour les applications IdO à faible coût avec connectivité Wi-Fi/Bluetooth LE
Prend en charge MicroPython et d'autres langages de programmation de haut niveau
Offre une sécurité de qualité industrielle au niveau matériel et des mises à jour de micrologiciel OTA sécurisées
Tire parti des bibliothèques logicielles prêtes à l'emploi et des croquis Arduino
Parfait pour surveiller et afficher en temps réel les données sur les tableaux de bord basés sur le cloud Arduino IoT
Compatible avec les familles Arduino Portenta et MKR
Comprend des broches castellated pour les lignes d'assemblage automatiques
Performances Économiques
Fiable, sécurisé et doté d'une puissance de calcul à la hauteur de sa gamme, le Portenta C33 a été conçu pour offrir aux grandes et petites entreprises de tous les secteurs l'opportunité d'accéder à l'IdO et de bénéficier de niveaux d'efficacité supérieurs et d'automatisation.
Applications
Le Portenta C33 offre davantage d'applications que jamais aux utilisateurs, en permettant des prototypages rapides plug-and-play et en proposant une solution économique pour les projets à grande échelle dans l'industrie.
Passerelle IdO industrielle
Surveillance des machines pour suivre les taux d'OEE/OPE
Contrôle qualité et assurance en ligne
Surveillance de la consommation d'énergie
Système de contrôle des appareils
Solution de prototypage IdO prête à l'emploi
Spécifications
Microcontrôleur
Renesas R7FA6M5BH2CBG ARM Cortex-M33:
Noyau ARM Cortex-M33 jusqu'à 200 MHz
512 Ko de SRAM intégrée
2 Mo de Flash intégrée
TrustZone ARM
Moteur de chiffrement sécurisé 9
Mémoires externes
16 Mo QSPI Flash
USB-C
USB-C haute vitesse
Connectivité
Interface Ethernet 100 Mo (PHY)
Wi-Fi
Bluetooth Low Energy
Interfaces
CAN
Carte SD
ADC
GPIO
SPI
I²S
I²C
JTAG/SWD
Sécurité
Élément sécurisé NXP SE050C2
Températures de fonctionnement
-40 à +85 °C (-40 à 185 °F)
Dimensions
66,04 x 25,40 mm
Téléchargements
Fiche technique
Schémas
La carte de développement ATmega328 Uno (compatible Arduino Uno) est une carte microcontrôleur basée sur l'ATmega328.
Il dispose de 14 broches d'entrée/sortie numériques (dont 6 peuvent être utilisées comme sorties PWM), de 6 entrées analogiques, d'un résonateur céramique de 16 MHz, d'une connexion USB, d'une prise d'alimentation, d'un connecteur ICSP et d'un bouton de réinitialisation.
Il contient tout le nécessaire pour prendre en charge le microcontrôleur ; connectez-le à un ordinateur avec un câble USB ou alimentez-le avec un adaptateur AC-DC ou une batterie pour commencer.
Spécifications
Microcontrôleur
ATmega328
Tension de fonctionnement
5 V CC
Tension d'entrée (recommandée)
7-12 V CC
Tension d'entrée (limites)
6-20 V CC
Broches d'E/S numériques
14 (dont 6 fournissent une sortie PWM)
Broches d'entrée analogique
6
SRAM
2 Ko (ATmega328)
EEPROM
1 Ko (ATmega328)
Mémoire Flash
32 Ko (ATmega328) dont 0,5 Ko utilisé par le bootloader
Vitesse de l'horloge
16 MHz
Téléchargements
Manual
Ce capteur de distance à ultrasons (ME007-ULA V1) offre des performances élevées avec une sonde robuste et étanche. Fonctionnant sur le principe de la télémétrie par écho ultrasonique, le capteur détermine la distance à une cible en mesurant le temps écoulé entre l'envoi d'une impulsion et la réception de l'écho. Sa conception sans contact lui permet de détecter une large gamme de matériaux, notamment des objets transparents ou non ferreux, des métaux, des non-métaux, des liquides, des solides et des poudres.
Spécifications
Détection de la distance
27~800 cm
Interface de sortie
RS232, tension analogique
Tension de fonctionnement
5-12 V
Courant moyen
<10 mA
Température de fonctionnement
−15~60°C
Dimensions
60 x 43 x 31 mm
Le SparkFun RP2350 Pro Micro fournit une plate-forme de développement puissante, construite autour du microcontrôleur RP2350. Cette carte utilise le facteur de forme Pro Micro mis à jour. Il comprend un connecteur USB-C, un connecteur Qwiic, une LED RVB adressable WS2812B, des boutons de démarrage et de réinitialisation, un fusible PTC réinitialisable et des plots de soudure PTH et crénelés.
Le RP2350 est un microcontrôleur double cœur unique doté de deux processeurs ARM Cortex-M33 et de deux processeurs Hazard3 RISC-V, tous fonctionnant jusqu'à 150 MHz ! Cela ne signifie pas pour autant que le RP2350 est un microcontrôleur quadricœur. Au lieu de cela, les utilisateurs peuvent sélectionner les deux processeurs à exécuter au démarrage. Vous pouvez exécuter deux processeurs du même type ou un de chaque. Le RP2350 dispose également de 520 Ko de SRAM répartis dans dix banques, d'une multitude de périphériques dont deux UART, deux contrôleurs SPI et deux I²C, ainsi que d'un contrôleur USB 1.1 pour la prise en charge des hôtes et des périphériques.
Le Pro Micro comprend également deux options de mémoire étendue : 16 Mo de mémoire Flash externe et 8 Mo de PSRAM connectés au contrôleur QSPI du RP2350. Le RP2350 Pro Micro fonctionne avec C/C++ en utilisant les environnements de développement Pico SDK, MicroPython et Arduino.
Caractéristiques
Microcontrôleur RP2350
8 Mo de PSRAM
16 Mo de Flash
Tension d'alimentation
USB : 5 V
RAW : 5,3 V (max.)
Brochage Pro Micro
2x UART
1x SPI
10x GPIO (4 utilisés pour UART1 et UART0)
4x Analogiques
Connecteur USB-C
Prise en charge des hôtes/périphériques USB 1.1
Connecteur Qwiic
Boutons
Reset
Boot
LED
LED RVB adressable WS2812
DEL d'alimentation rouge
Dimensions : 33 x 17,8 mm
Téléchargements
Schematic
Eagle Files
Board Dimensions
Hookup Guide
RP2350 MicroPython Firmware (Beta 04)
SparkFun Pico SDK Library
Arduino Pico Arduino Core
Datasheet (RP2350)
Datasheet (APS6404L PSRAM)
RP2350 Product Brief
Raspberry Pi RP2350 Microcontroller Documentation
Qwiic Info Page
GitHub Repository
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications.
Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels.
The HTCC-AB02S is a developer-friendly board with an integrated AIR530Z GPS module, ideal for quickly testing and validating communication solutions.
Features
Arduino compatible
Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262
LoRaWAN 1.0.2 support
Ultra low power design, 21 uA in deep sleep
Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching)
Good impendence matching and long communication distance
Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel
Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures
Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing
Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information
Using Air530 GPS module with GPS/Beidou Dual-mode position system support
Specifications
Main Chip
ASR6502 (48 MHz ARM Cortex-M0+ MCU)
LoRa Chipset
SX1262
Frequency
863~870 MHz
Max. TX Power
22 ±1 dBm
Max. Receiving Sensitivity
−135 dBm
Hardware Resource
2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO
Memory
128 Kb FLASH16 Kb SRAM
Power consumption
Deep sleep 21 uA
Interfaces
1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header)
Battery
3.7 V lithium battery (power supply and charging)
Solar Energy
VS pin can be connected to 5.5~7 V solar panel
USB to Serial Chip
CP2102
Display
0.96" OLED (128 x 64)
Operating temperature
−20~70°C
Dimensions
55.9 x 27.9 x 9.5 mm
Included
1x CubeCell HTCC-AB02S Development Board
1x Antenna
1x 2x SH1.25 battery connector
Downloads
Datasheet
Schematic
GPS module (Manual)
Quick start
GitHub
Caractéristiques
Intègre le CAN V2.0B jusqu'à 1 Mb/s
Connecteur sub-D 9 broches standard industriel
OBD-II et CAN standard pinout selectable.
Pince de sélection de puce modifiable
Pin CS variable pour emplacement de carte TF
Pince INT modifiable
Bornes à vis permettant de connecter facilement CAN_H et CAN_L
Connecteurs de broches Arduino Uno
Support de carte micro SD
2 connecteurs Grove (I2C et UART)
Interface SPI jusqu'à 10 MHz
Données standard (11 bits) et étendues (29 bits) et trames distantes
Deux tampons de réception avec stockage prioritaire des messages
La base de jardin Pico Breakout se trouve sous votre Pico et vous permet d'y connecter jusqu'à six de notre vaste sélection de sorties Pimoroni. Qu'il s'agisse de capteurs environnementaux pour que vous puissiez suivre la température et l'humidité dans votre bureau, de toute une série de petits écrans pour les notifications et lectures importantes et, bien sûr, de LED. Faites défiler vers le bas pour une liste des sous-commissions actuellement compatibles avec nos bibliothèques C++/MicroPython ! En plus d'une zone d'atterrissage étiquetée pour votre Pico, il existe également un ensemble complet de connexions Pico découpées, au cas où vous auriez besoin de connecter encore plus de capteurs, de fils et de circuits. Nous avons ajouté des pieds en caoutchouc pour maintenir la base bien stable et pour l'empêcher de rayer votre bureau, ou il y a des trous de montage M2,5 dans les coins afin que vous puissiez la boulonner sur une surface solide si vous préférez.
Les six emplacements noirs robustes sont des connecteurs de bord qui relient les sorties aux broches de votre Pico. Il y a deux emplacements pour les sorties SPI et quatre emplacements pour les sorties I²C. Parce qu'I²C est un bus, vous pouvez utiliser plusieurs appareils I²C en même temps, à condition qu'ils n'aient pas la même adresse I²C (nous nous sommes assurés que toutes nos sorties ont des adresses différentes, et nous les imprimons au dos de chaque bus). les éruptions cutanées pour qu'elles soient faciles à trouver). En plus d'être un moyen pratique d'ajouter des fonctionnalités à votre Pico, Breakout Garden est également très utile pour les projets de prototypage sans avoir besoin de câblage, de soudure ou de planches à pain compliqués, et vous pouvez agrandir ou modifier votre configuration à tout moment.
Caractéristiques
Six emplacements de connecteur de bord robustes pour les ruptures
4x emplacements I²C (5 broches)
2x emplacement SPI (7 broches)
Zone d'atterrissage avec embases femelles pour Raspberry Pi Pico
Pas de 0,1", connecteurs 5 ou 7 broches
Des épingles cassées
Protection contre l'inversion de polarité (intégrée aux breakouts)
99% assemblé – il suffit de coller les pieds !
Compatible avec Raspberry Pi Pico
Grove-Servo is a rotary actuator that allows for precise control of the angular position. It's suitable for use in closed-loop systems where precise position control is needed. We regulated the three-wire servo into a Grove standard connecter. You can plug and play it as a typical Grove module now, without jumper wires clutter.
Features
High Accuracy: closed-loop control of position, speed and torque is achieved
High Stability: stable operation at a low speed of 0.12/0.16s/60°
Easy to use: compatible with Grove port, just plug-and-play
Caractéristiques
Compensation de soudure froide intégrée
Types pris en charge (désignés par NIST ITS-90) : Type K, J, T, N, S, E, B et R Quatre sorties d'alerte de température programmables :
Surveiller les jonctions chaudes ou froides
Températures
Détecter les températures en hausse ou en baisse
Jusqu'à 255°C ou hystérésis programmable
Filtre numérique programmable pour la température
Batterie faible
Dimensions : 20 mm x 40 mm x 18 mm
Poids : 18g
Application
Gestion thermique pétrochimique
Équipement de mesure portatif
Gestion thermique des équipements industriels
Fours
Moniteur thermique de moteur industriel
Racks de détection de température
Téléchargements
Fichiers Aigle
Bibliothèque Github
Fiche de données
Le Challenger RP2040 NFC est un petit ordinateur embarqué, équipé d'un contrôleur NFC intégré avancé (NXP PN7150), dans le format populaire Adafruit Feather. Il est basé sur une puce de microcontrôleur RP2040 de la Fondation Raspberry Pi qui est un Cortex-M0 double cœur pouvant fonctionner sur une horloge allant jusqu'à 133 MHz.
NFC Le PN7150 est une solution de contrôleur NFC complète avec micrologiciel intégré et interface NCI conçue pour une communication sans contact à 13,56 MHz. Il est entièrement compatible avec les exigences du forum NFC et est largement conçu sur la base des enseignements tirés de la génération précédente d'appareils NXP NFC. C'est la solution idéale pour intégrer rapidement la technologie NFC dans n'importe quelle application, en particulier les petits systèmes embarqués réduisant la nomenclature (BOM).
La conception intégrée avec une compatibilité totale avec le forum NFC offre à l'utilisateur toutes les fonctionnalités suivantes :
Micrologiciel NFC intégré fournissant tous les protocoles NFC en tant que fonctionnalité pré-intégrée.
Connexion directe à l'hôte principal ou au microcontrôleur, par bus physique I²C et protocole NCI.
Consommation d'énergie ultra faible en mode boucle d'interrogation.
Unité de gestion de l'énergie (PMU) intégrée très efficace permettant une alimentation directe à partir d'une batterie.
Caractéristiques
Microcontrôleur
RP2040 de Raspberry Pi (Cortex-M0 double cœur 133 MHz)
IPS
Un canal SPI configuré
I²C Deux canaux I²C configurés (I²C dédié pour le PN7150)
UART
Un canal UART configuré
Entrées analogiques
4 canaux d'entrée analogiques
Module NFC
PN7150 de NXP
Mémoire flash
8 Mo, 133 MHz
Mémoire SRAM
264 Ko (divisé en 6 banques)
Contrôleur USB 2.0
Jusqu'à 12 Mbit/s à pleine vitesse (USB 1.1 PHY intégré)
Connecteur de batterie JST
Pas de 2,0 mm
Chargeur LiPo intégré
Courant de charge standard de 450 mA
Dimensions
51x23x3.2mm
Poids
9g
Remarque : l'antenne n'est pas incluse.
Téléchargements
Fiche de données
Exemple de démarrage rapide
Le module de capteur d'empreintes digitales R301T est capable de collecter des images et d’exécuter des algorithmes grâce à sa puce intégrée. Une autre fonction remarquable du capteur est qu'il peut reconnaître l'empreinte digitale dans différentes conditions, par exemple l'humidité, la texture de la lumière ou les changements de la peau. Cela offre un très large éventail d'applications possibles pour sécuriser les serrures et les portes, entre autres. La puce peut envoyer des données via UART, TTL série et USB au contrôleur connecté. Specifications Modèle Capteur JP2000 Puce 32 Bit ARM Cortex-M3 Mémoires 96 Ko RAM, 1 Mo Flash Alimentation 4.2 - 6.0 V Courant de fonctionnement Typique: 40 mAPic: 50 mA Logic level 3,3 / 5 V TTL Logic Capacité de stockage d'empreintes digitales 3000 Empreintes Mode d'appariement 1:N identification1:1 vérification Niveau de sécurité réglable 1 - 5 niveaux(niveau de sécurité standard: 3) Taux d'acceptation erronée (au niveau de sécurité 3) Taux de rejet erroné (au niveau de sécurité 3) Délai de réponse Prétraitement: Correspondance: Prise en charge du débit en bauds 9600 - 921600 Communication UART Pas de parité, un bit d'arrêt Dimensions 42 x 19 x 8 mm Inclus 1x Capteur d'empreintes digitales COM-FP-R301T 1x Cable Téléchargements Fiche technique Manuel
THSER102 est un kit d'extension de câble plug-and-play pour les modules de caméra Raspberry Pi. Le kit est compatible avec le Raspberry Pi Camera Module 3, en plus de Camera V2 (version 2.1), HQ/Global Shutter Camera, et les modes définis du Raspberry Pi Camera Module V1.3.Le THSER102 étend la longueur du câble à plus de 10 mètres entre le Raspberry Pi Camera Module et l'ordinateur à l'aide d'un câble LAN standard.Il n'y a pas besoin de logiciel ou de codage. Le THSER102 fonctionne comme si la caméra Raspberry Pi était directement connectée à l'ordinateur.Le THSER102 supporte également des applications avancées. Le support HAT on HAT permet d'utiliser une autre carte HAT au dessus de la carte THSER102 Rx. 3ch GPIO Extension permet d'étendre la communication GPIO entre la caméra et l'ordinateur.
Caractéristiques
Prise en charge de tous les modules de caméra Raspberry Pi, y compris le module de caméra 3
>Rallonge de câble de 10 mètres
Prêt à l'emploi
Aucune configuration logicielle n'est nécessaire.
La caméra fonctionne comme si THSER102 n'existait pas.
Applications avancées prises en charge
HAT sur HAT
Extension GPIO 3 canaux
Inclus
1x carte d'émission
1x carte Rx
1x câble LAN (2 m)
2x câbles plats flexibles
1x tête de broche
6x vis de montage pour carte Rx
Entretoises 3x plus longues pour carte Rx
4x vis de montage pour carte Tx (pour caméra V2 uniquement)
4x entretoises plus courtes pour la carte Tx (pour la caméra V2 uniquement)
4x écrous de montage pour carte Tx (pour caméra V2 uniquement)
Téléchargements
Fiche de données
Le GrovePi+ est un système modulaire et facile à utiliser pour le piratage matériel avec le Raspberry Pi, pas besoin de soudure ni de planche à pain : branchez vos capteurs Grove et démarrez directement la programmation. Grove est une collection facile à utiliser de plus de 100 modules plug-and-play peu coûteux qui détectent et contrôlent le monde physique. En connectant les capteurs Grove au Raspberry Pi, cela renforce votre Pi dans le monde physique. Avec des centaines de capteurs parmi les familles Grove, les possibilités d'interaction sont infinies.
Configuration en 4 étapes simples
Glissez la carte GrovePi+ sur votre Raspberry Pi
Connectez les modules Grove à la carte GrovePi+
Téléchargez votre programme sur Raspberry Pi
Commencez à exploiter les données mondiales
Attention : la carte Raspberry Pi n'est pas incluse
La carte support SparkFun MicroMod mikroBUS tire parti des écosystèmes MicroMod, Qwiic et mikroBUS, ce qui facilite le prototypage rapide avec chacun d'eux, combinés. Le socket MicroMod M.2 et l'en-tête mikroBUS à 8 broches offrent aux utilisateurs la liberté d'expérimenter respectivement avec n'importe quelle carte processeur de l'écosystème MicroMod et n'importe quelle carte Click de l'écosystème mikroBUS. Cette carte dispose également de deux connecteurs Qwiic pour intégrer de manière transparente des centaines de capteurs et accessoires Qwiic dans votre projet. La prise mikroBUS comprend une paire de connecteurs femelles à 8 broches avec une configuration de broches standardisée. Les broches se composent de trois groupes de broches de communication (SPI, UART et I²C), de six broches supplémentaires (PWM, interruption, entrée analogique, réinitialisation et sélection de puce) et de deux groupes d'alimentation (3,3 V et 5 V).
Bien qu'un connecteur USB-C moderne facilite la programmation, la carte porteuse est également équipée d'un circuit intégré de charge lithium-ion/lithium-polymère monocellulaire MCP73831 afin que vous puissiez charger une batterie LiPo monocellulaire connectée. Le circuit intégré de charge est alimenté par la connexion USB et peut fournir jusqu'à 450 mA pour charger une batterie connectée.
Caractéristiques
Connecteur M.2 MicroMod (carte processeur)
Connecteur USB-C
Régulateur de tension 3,3 V 1 A
2x connecteurs Qwiic
Prise mikroBUS
Boutons de démarrage/réinitialisation
Circuit de recharge
Broches JTAG/SWD PTH
Téléchargements
Schématique
Fichiers Aigle
Dimensions de la carte
Guide de connexion
Premiers pas avec Necto Studio
Norme microBUS
Page d'informations Qwiic
Dépôt de matériel GitHub
Le DiP-Pi WiFi Master est un système de connectivité WiFi avancé avec des interfaces intégrées de capteurs qui couvrent la plupart des besoins possibles pour les applications IoT basées sur Raspberry Pi Pico. Il est alimenté directement depuis le Raspberry Pi Pico VBUS. Le DiP-Pi WiFi Master contient un bouton RESET intégré au Raspberry Pi Pico ainsi qu'un interrupteur à glissière ON/OFF qui agit sur les sources d'alimentation du Raspberry Pi Pico.
Le DiP-Pi WiFi Master est équipé d'un module WiFi ESP8266 Clone avec antenne intégrée. Cette fonctionnalité ouvre une large gamme d'applications IoT basées sur celle-ci. En plus de toutes les fonctionnalités ci-dessus, le DiP-Pi WiFi Master est équipé de capteurs DHT11/22 à 1 fil intégrés et d'interfaces de carte micro-SD. La combinaison des interfaces étendues d'alimentation, de batterie et de capteurs rend le DiP-Pi WiFi Master idéal pour les applications IoT telles que l'enregistreur de données, la surveillance des usines, la surveillance des réfrigérateurs, etc.
DiP-Pi WiFi Master est pris en charge avec de nombreux exemples prêts à l'emploi écrits en Micro Python ou C/C++.
Caractéristiques
Général
Dimensions 21 x 51 mm
Compatible avec le brochage Raspberry Pi Pico
LED informatives indépendantes (VBUS, VSYS, V3V3)
Bouton RESET du Raspberry Pi Pico
Interrupteur à glissière ON/OFF agissant sur la source d'alimentation Raspberry Pi Pico
LDO intégré de 3,3 V à 600 mA
Connectivité WiFi clone ESP8266
Commutateur de téléchargement du micrologiciel ESP8266
Interface 1 fil intégrée
Interface DHT-11/22 intégrée
Options d'alimentation
Raspberry Pi Pico micro USB (via VBUS)
Périphériques et interfaces intégrés
Interface 1 fil intégrée
Interface DHT-11/22 intégrée
Prise pour carte Micro SD
Interface de programmation
Raspberry Pi standard Pico C/C++
Raspberry Pi standard Pico Micro Python
Compatibilité des cas
Boîtier DiP-Pi Plexi-Cut
LED informatives
VB (VUSB)
États-Unis (VSYS)
V3 (V3V3)
Protection du système
Bouton de réinitialisation matérielle instantanée Raspberry Pi Pico
Fusible PPTC 500 mA @ 18 V sur EPR
Protection contre la surchauffe EPR/LDO
EPR/LDO À propos de la protection actuelle
Conception du système
Conçu et simulé avec PDA Analyzer avec l'un des outils CAO/FAO les plus avancés – Altium Designer
Origine industrielle
Construction de circuits imprimés
PCB de 2 oz en cuivre fabriqué pour une alimentation et un refroidissement appropriés en courant élevé
Technologie de piste de 6 mils/écart de 6 mils PCB à 2 couches
Finition de surface de PCB – Immersion Gold
Tuyaux thermiques en cuivre multicouche pour une réponse thermique accrue du système et un meilleur refroidissement passif
Téléchargements
Fiche de données
Manuel
Connecteur droit SMA vers Connecteur droit SMA, 76,2 mm Caractéristiques Gamme de fréquences 0 à 18GHz VSWR (≤1.35) Perte d'insertion ≤0,22 db Corps Laiton nickelé Contact au centre Laiton doré Isolateur PTFE
Si vous souhaitez repousser les limites de résolution du V-One, ces embouts de distribution vous aideront à réaliser vos projets expérimentaux. Ce pack contient 4 buses extra-fines d'un diamètre interne de 0,150 mm (6 mil).
Ne pas utiliser avec de la pâte à souder ! Elle se bouchera !