Feutre universel pour la plupart des surfaces
Convient pour la rétroprojection
Convient également pour utilisation sur CD et DVD
Excellente résistance à l'eau et aux frottements sur la plupart des surfaces
Séchage rapide sur le support, idéal pour les gauchers
Encre permanente et quasi inodore
Encre noire et marron résistante aux U.V.
Encre noire résistante aux intempéries
Etui chevalet STAEDTLER box
Corps et capuchon en polypropylène garantissant une longue durée de vie
Encre "DRY SAFE" permettant de laisser décapuchonné plusieurs jours sans sécher (Test ISO 554)
Sécurité avion : équilibrage automatique de la pression empêchant l'encre de fuir
Encre sans xylène ni toluène
Couleurs intenses
Pointe superfine 0.4 mm
Rechargeable
From Theory to Practical Applications in Wireless Energy Transfer and Harvesting
Wireless power transmission has gained significant global interest, particularly with the rise of electric vehicles and the Internet of Things (IoT). It’s a technology that allows the transfer of electricity without physical connections, offering solutions for everything from powering small devices over short distances to long-range energy transmission for more complex systems.
Wireless Power Design provides a balanced mix of theoretical knowledge and practical insights, helping you explore the potential of wireless energy transfer and harvesting technologies. The book presents a series of hands-on projects that cover various aspects of wireless power systems, each accompanied by detailed explanations and parameter listings.
The following five projects guide you through key areas of wireless power:
Project 1: Wireless Powering of Advanced IoT Devices
Project 2: Wireless Powered Devices on the Frontline – The Future and Challenges
Project 3: Wireless Powering of Devices Using Inductive Technology
Project 4: Wireless Power Transmission for IoT Devices
Project 5: Charging Robot Crawler Inside the Pipeline
These projects explore different aspects of wireless power, from inductive charging to wireless energy transmission, offering practical solutions for real-world applications. The book includes projects that use simulation tools like CST Microwave Studio and Keysight ADS for design and analysis, with a focus on practical design considerations and real-world implementation techniques.
Le Raspberry Pi 500 (basé sur le Raspberry Pi 5) est doté d'un processeur Arm 64 bits quadricœur, d'un contrôleur d'I/O RP1, de 8 Go de RAM, d'un réseau sans fil, d'une sortie double affichage, d'une lecture vidéo 4K et un connecteur GPIO à 40 broches. C'est un ordinateur tout-en-un puissant et compact intégré dans un clavier portable.
Le dissipateur thermique en aluminium intégré offre des performances thermiques améliorées, permettant au Raspberry Pi 500 de fonctionner rapidement et en douceur, même sous une charge importante.
Spécifications
SoC
Broadcom BCM2712
Processeur
ARM Cortex-A76 (ARM v8) 64 bits
Taux d'horloge
4x 2,4 GHz
GPU
VideoCore VII (800 MHz)
RAM
8 Go LPDDR4X (4267 MHz)
Wi-Fi
IEEE 802.11b/g/n/ac (2,4 GHz/5 GHz)
Bluetooth
Bluetooth 5.0, BLE
Ethernet
Gigabit Ethernet (avec prise en charge PoE+)
USB
2x USB-A 3.0 (5 GBit/s)1x USB-A 2.01x USB-C (pour l'alimentation)
PCI Express
1x PCIe 2.0
GPIO
Connecteur GPIO standard à 40 broches
Vidéo
2x ports micro-HDMI (4K60)
Multimédia
H.265 (décodage 4K60)OpenGL ES 3.1, Vulkan 1.2
Carte SD
microSD
Alimentation
5 V CC (via USB-C)
Disposition du clavier
Français (AZERTY)
Dimensions
286 x 122 x 23 mm
Téléchargements
Datasheet
Third, extended and revised edition with AVR Playground and Elektor Uno R4
Arduino boards have become hugely successful. They are simple to use and inexpensive. This book will not only familiarize you with the world of Arduino but it will also teach you how to program microcontrollers in general. In this book theory is put into practice on an Arduino board using the Arduino programming environment.
Some hardware is developed too: a multi-purpose shield to build some of the experiments from the first 10 chapters on; the AVR Playground, a real Arduino-based microcontroller development board for comfortable application development, and the Elektor Uno R4, an Arduino Uno R3 on steroids.
The author, an Elektor Expert, provides the reader with the basic theoretical knowledge necessary to program any microcontroller: inputs and outputs (analog and digital), interrupts, communication busses (RS-232, SPI, I²C, 1-wire, SMBus, etc.), timers, and much more. The programs and sketches presented in the book show how to use various common electronic components: matrix keyboards, displays (LED, alphanumeric and graphic color LCD), motors, sensors (temperature, pressure, humidity, sound, light, and infrared), rotary encoders, piezo buzzers, pushbuttons, relays, etc. This book will be your first book about microcontrollers with a happy ending!
This book is for you if you are a beginner in microcontrollers, an Arduino user (hobbyist, tinkerer, artist, etc.) wishing to deepen your knowledge,an Electronics Graduate under Undergraduate student or a teacher looking for ideas.
Thanks to Arduino the implementation of the presented concepts is simple and fun. Some of the proposed projects are very original:
Money Game
Misophone (a musical fork)
Car GPS Scrambler
Weather Station
DCF77 Decoder
Illegal Time Transmitter
Infrared Remote Manipulator
Annoying Sound Generator
Italian Horn Alarm
Overheating Detector
PID Controller
Data Logger
SVG File Oscilloscope
6-Channel Voltmeter
All projects and code examples in this book have been tried and tested on an Arduino Uno board. They should also work with the Arduino Mega and every other compatible board that exposes the Arduino shield extension connectors.
Please note
For this book, the author has designed a versatile printed circuit board that can be stacked on an Arduino board. The assembly can be used not only to try out many of the projects presented in this book but also allows for new exercises that in turn provide the opportunity to discover new techniques. Also available is a kit of parts including the PCB and all components. With this kit you can build most of the circuits described in the book and more.
Datasheets Active Components Used (.PDF file):
ATmega328 (Arduino Uno)
ATmega2560 (Arduino Mega 2560)
BC547 (bipolar transistor, chapters 7, 8, 9)
BD139 (bipolar power transistor, chapter 10)
BS170 (N-MOS transistor, chapter 8)
DCF77 (receiver module, chapter 9)
DS18B20 (temperature sensor, chapter 10)
DS18S20 (temperature sensor, chapter 10)
HP03S (pressure sensor, chapter 8)
IRF630 (N-MOS power transistor, chapter 7)
IRF9630 (P-MOS power transistor, chapter 7)
LMC6464 (quad op-amp, chapter 7)
MLX90614 (infrared sensor, chapter 10)
SHT11 (humidity sensor, chapter 8)
TS922 (dual op-amp, chapter 9)
TSOP34836 (infrared receiver, chapter 9)
TSOP1736 (infrared receiver, chapter 9)
MPX4115 (analogue pressure sensor, chapter 11)
MCCOG21605B6W-SPTLYI (I²C LCD, chapter 12)
SST25VF016B (SPI EEPROM, chapter 13)
About the author
Clemens Valens, born in the Netherlands, lives in France since 1997. Manager at Elektor Labs and Webmaster of ElektorLabs, in love with electronics, he develops microcontroller systems for fun, and sometimes for his employer too. Polyglot—he is fluent in C, C++, PASCAL, BASIC and several assembler dialects—Clemens spends most of his time on his computer while his wife, their two children and two cats try to attract his attention (only the cats succeed). Visit the author’s website: www.polyvalens.com.Authentic testimony of Hervé M., one of the first readers of the book:'I almost cried with joy when this book made me understand things in only three sentences that seemed previously completely impenetrable.'
Démarrez avec l'électronique à base de microcontrôleurs
Ce pack compatible Arduino contient la carte mère, le numériseur, le réseau de capteurs et la matrice RVB. Avec ces 4 cartes, vous disposez de tout le nécessaire pour créer une horloge, un compteur de points, un minuteur, un rappel de tâches, un thermomètre, un hygromètre, un sonomètre, un luxmètre, un déclencheur d'applaudissements, un graphique à barres colorées, une alarme animée et bien plus encore !
La carte mère intègre un module d'horloge temps réel qui affiche l'heure même lorsqu'elle est débranchée.
Le numériseur peut afficher 4 chiffres ou caractères et comprend 2 boutons et un potentiomètre pour contrôler l'affichage ou la luminosité de l'écran.
Le réseau de capteurs peut lire la température, l'humidité relative, le son et la lumière, et dispose d'un lecteur de carte SD pour l'enregistrement des données.
La matrice RVB est dotée de 16 LED RVB contrôlées par des registres à décalage, ce qui permet d'utiliser seulement 3 ou 4 broches de la carte mère.
Carte mère
La carte mère est une carte de dérivation pour microcontrôleur compatible Arduino, conçue autour de l'ATmega328P. Elle est livrée en kit à souder avec tous les composants nécessaires pour débuter avec l'électronique à base de microcontrôleur. Toutes les autres cartes s'y connectent.
Basée sur l'ATmega328P
Compatible Arduino
Horloge temps réel (RTC) intégrée
Connecteur FTDI pour une programmation facile
Connecteur Bluetooth
Connexions par bornier
Numériseur
Le numériseur est une carte d'affichage et d'entrée polyvalente. Il vous permet de visualiser vos données. Affichez les informations de vos capteurs, les chiffres de votre horloge, ou même de compter les points de votre jeu de cartes préféré. Le numériseur comprend également quelques boutons et un bouton pour vous permettre de prendre le contrôle.
4 afficheurs 7 segments
Utilise des registres à décalage 595
2 commutateurs et un potentiomètre
4 LED de mode colorées
Chaînable avec d'autres cartes 595
Connexions par bornier
Réseau de capteurs
Comme son nom l'indique, le réseau de capteurs est un ensemble de capteurs. Il mesure la température et l'humidité relative via le DHT11, la lumière via la résistance photosensible et le son via le microphone et le circuit amplificateur. Vous pouvez ensuite enregistrer les données via le lecteur de carte SD intégré.
DHT11 Temp & Capteur d'humidité
Circuit microphone et amplificateur
Résistance photosensible
Emplacement microSD pour la sauvegarde des données
Circuit convertisseur de niveau logique
Connexions au bornier
Matrice RVB
Ajoutez de la couleur à votre projet en contrôlant 16 LED rouges, 16 vertes et 16 bleues avec seulement 3 broches de votre microcontrôleur. La matrice RVB utilise des registres à décalage, une matrice et des transistors de commutation ; il y a donc beaucoup à apprendre et à explorer.
4x4 (16) LED RVB
Utilise des registres à décalage 595
Chaînable avec d'autres cartes 595
Commutateurs à transistors
Connexions au bornier
Téléchargements (manuels)
Motherboard
Digitiser
Sensor Array
RGB Matrix
Le LCD 16x2 conventionnel nécessite jusqu'à 10 broches d'E/S pour l'affichage, et le LCD 16x2 avec rétroéclairage RGB nécessite 3 broches supplémentaires pour contrôler la couleur du rétroéclairage. Cela occupera beaucoup de broches d'E/S sur la carte de commande principale, en particulier pour les cartes de développement avec peu de broches d'E/S, comme l'Arduino et le Raspberry Pi.
Avec le connecteur Grove I2C, seules 2 broches pour les signaux et 2 broches d'alimentation sont nécessaires. Vous n'avez même pas besoin de vous soucier de la façon de connecter ces broches. Il suffit de le brancher à l'interface I2C sur Seeeduino ou Arduino/Raspberry Pi+baseshield via le câble Grove.
Pas de câblage compliqué, pas de soudure, pas besoin de s'inquiéter de detruire le LCD par une mauvaise résistance de limitation de courant. Easy peasy.
Caractéristiques
Dimensions : 83 x 44 x 13 mm
Poids : 42 g
Batterie : xeclue
Tension d'entrée : 5 V
Build your own AI microcontroller applications from scratch
The MAX78000FTHR from Maxim Integrated is a small development board based on the MAX78000 MCU. The main usage of this board is in artificial intelligence applications (AI) which generally require large amounts of processing power and memory. It marries an Arm Cortex-M4 processor with a floating-point unit (FPU), convolutional neural network (CNN) accelerator, and RISC-V core into a single device. It is designed for ultra-low power consumption, making it ideal for many portable AI-based applications.
This book is project-based and aims to teach the basic features of the MAX78000FTHR. It demonstrates how it can be used in various classical and AI-based projects. Each project is described in detail and complete program listings are provided. Readers should be able to use the projects as they are, or modify them to suit their applications. This book covers the following features of the MAX78000FTHR microcontroller development board:
Onboard LEDs and buttons
External LEDs and buttons
Using analog-to-digital converters
I²C projects
SPI projects
UART projects
External interrupts and timer interrupts
Using the onboard microphone
Using the onboard camera
Convolutional Neural Network
Kit de forets à buse de nettoyage petite boîte contenant 10 forets en carbure PCB de 0,8 mm tous avec une tige de 4 mm.
Idéal pour percer de petits trous de précision dans les PCB, le plastique ou le métal mou.
Le FR01D (2-en-1) caméra thermique et multimètre est une solution compacte et légère qui facilite les tâches de diagnostic et de maintenance. Grâce à sa fonction transparente en un seul clic, vous pouvez basculer sans effort entre les modes d'imagerie thermique et multimètre, vous offrant ainsi deux outils essentiels dans un seul appareil portable.
Le multimètre est capable de mesurer la tension continue et alternative, la résistance, les vérifications de diodes, les tests de continuité et la capacité.
Le FR01D dispose d'un écran tactile de 2,8 pouces avec une résolution de 320 x 480 pixels. L'appareil est alimenté par une batterie au lithium rechargeable intégrée et peut être rechargé via USB.
Avec le FR01D, vous pouvez inspecter et entretenir les circuits imprimés, vérifier les alimentations électriques, réparer les appareils électroniques et réviser les appareils électroménagers. Sa taille compacte, sa multifonctionnalité et sa convivialité font du FR01D le compagnon idéal des techniciens en électronique et de maintenance.
Spécifications générales
Taille d'affichage
2,8" (320 x 480)
Écran tactile
Résistif
Transmission de données
USB-C
Format de stockage des images
BMP
Batterie
Batterie Li-ion
Température de stockage
−20°C ~ 60°C
Température de fonctionnement
0°C ~ 50°C
Humidité de fonctionnement
<85% HR
Dimensions
134 x 69 x 25 mm
Poids
130 g
Spécifications de la caméra d'imagerie thermique
Capteur
Oxyde de vanadium (VOx)
Fréquence de capture d'images
25 Hz
Pixels d'imagerie thermique
192 x 192
Champ de vision (FOV)
50,0°(H) x 50°(V) / 72,1°(D)
Plage de température
−20°C ~ +550°C
Mode gain
Auto
Précision
±2°C ou ±2%
Résolution de mesure
0,1°C
Spécifications du multimètres
Tension d'entrée CC (max.)
1000 V
Tension d'entrée CA (max.)
750 V
Résistance (max.)
99,99 MΩ
Capacité (max.)
99,99 mF
Plage de test du cycle de service
0,1% ~ 99,9%
Plage de test des diodes
0 V ~ 3 V
Test de continuité
999,9 Ω
Affichage
9999 comptes (actualisation 3 x par seconde)
Précision
Fonction
Gamme
Résolution
Précision
Tension alternative
400 mV
0.1 mV
2% +3
9.999 V
0.001 V
1.0% +3
99.99 V
0.01 V
999.9 V
0.1V
Tension continue
400 mV
0.1 mV
2% +3
9.999 V
0.001 V
1.0% +3
99.99 V
0.01 V
999.9 V
0.1 V
Résistance
999.9 Ω
0.1 Ω
0.5% +3
9.999 KΩ
0.001 kΩ
99.99 KΩ
0.01 kΩ
999.9 KΩ
0.1 kΩ
9.999 MΩ
0.001 MΩ
99.99 MΩ
0.01 MΩ
1.5% +3
Test de diode
3.000 V
0.001 V
10%
Capacitance
9.999 nF
0.001 nF
2% +5
99.99 nF
0.01 nF
999.9 nF
0.1 nF
9.999 uF
0.001 uF
99.99 uF
0.01 uF
999.9 uF
0.1 uF
9.999 mF
0.001 mF
5% +5
99.99 mF
0.01 mF
Inclus
1x FR01D Caméra d'imagerie thermique & Multimètre
2x Câbles de test
1x Câble USB
1x Manuel
Technology is constantly changing. New microcontrollers become available every year and old ones become redundant. The one thing that has stayed the same is the C programming language used to program these microcontrollers. If you would like to learn this standard language to program microcontrollers, then this book is for you!
ARM microcontrollers are available from a large number of manufacturers. They are 32-bit microcontrollers and usually contain a decent amount of memory and a large number of on-chip peripherals. Although this book concentrates on ARM microcontrollers from Atmel, the C programming language applies equally to other manufacturer’s ARMs as well as other microcontrollers.
Features of this book
Use only free or open source software.
Learn how to download, set up and use free C programming tools.
Start learning the C language to write simple PC programs before tackling embedded programming - no need to buy an embedded system right away!
Start learning to program from the very first chapter with simple programs and slowly build from there.
No programming experience is necessary!
Learn by doing - type and run the example programs and exercises.
Sample programs and exercises can be downloaded from the Internet.
A fun way to learn the C programming language.
Ideal for electronic hobbyists, students and engineers wanting to learn the C programming language in an embedded environment on ARM microcontrollers.
ARM Cortex-M Embedded Design from 0 to 1
Hobbyists can mash together amazing functional systems using platforms like Arduino or Raspberry Pi, but it is imperative that engineers and product designers understand the foundational knowledge of embedded design. There are very few resources available that describe the thinking, strategies, and processes to take an idea through hardware design and low-level driver development, and successfully build a complete embedded system. Many engineers end up learning the hard way, or never really learn at all.
ARM processors are essentially ubiquitous in embedded systems. Design engineers building novel devices must understand the fundamentals of these systems and be able to break down large, complicated ideas into manageable pieces. Successful product development means traversing a huge amount of documentation to understand how to accomplish what you need, then put everything together to create a robust system that will reliably operate and be maintainable for years to come.
This book is a case study in embedded design including discussion of the hardware, processor initialization, low‑level driver development, and application interface design for a product. Though we describe this through a specific application of a Cortex-M3 development board, our mission is to help the reader build foundational skills critical to being an excellent product developer. The completed development board is available to maximize the impact of this book, and the working platform that you create can then be used as a base for further development and learning.
The Embedded in Embedded program is about teaching fundamental skill sets to help engineers build a solid foundation of knowledge that can be applied in any design environment. With nearly 20 years of experience in the industry, the author communicates the critical skill development that is demanded by companies and essential to successful design. This book is as much about building a great design process, critical thinking, and even social considerations important to developers as it is about technical hardware and firmware design.
Downloads
EiE Software Archive (200 MB)
IAR ARM 8.10.1 (Recommended IDE version to use) (1.2 GB)
IAR ARM 7.20.1 (Optional IDE version to use) (600 MB)
Le téléchargement intégral de ce numéro est disponible pour nos membres GOLD et GREEN sur le site Elektor Magazine !Pas encore membre ? Cliquez ici.petite alimentation solairelumière du soleil en entrée, 3,3 V en sortiecommutateur audio stéréo statiquesans clics ni pièces mobilesgrand chiffre RGBavec LED traversants de type WS2812préamplificateur de microphone avec alimentation fantôme 48 Vidéal pour le podcasting et la sonorisation progénérateurs d'ondes carrées avec commande de rapport cyclique et de fréquencemontages simples avec des CI CMOS et TTLcompresseur Dynamique Simpleavec contrôle doux et un son chaleureuxserrure électronique simpleredresseur actifde 2 à 40 V jusqu'à 3 A avec suppression du courant inversecommutation marche/arrêt pour enceintes activesconvertisseur symétrique/asymétriqueavec filtre RFI et protection CC2023 : l'odyssée de l'IAorigine et évolutionrégulateur de vitesse pour ventilateur ou aérateuravec modes manuel et thermostatPlateforme Projets Arduino : dernières nouvellesnouveaux projets de la communautémoniteur de surchargesurveillez les lignes électriques pour détecter les courants excessifsclignotement nocturne sans transistorsun oscillateur ne comportant que des composants à deux filsgénérateur de code morseutilisez-le comme balise ou dispositif d'apprentissage !CNA vidéo programmabletraite tous les formats jusqu'à RGB888un tout petit pianosans pièces mobilesdouble-dé électronique sans microcontrôleurdeux dés sur un seul circuit imprimé – plus quelques astuces de conceptioneffaroucheur électroniquecircuits qui amusent, inspirent et étonnentthermomètre LC-LP-HAmesures précises et affichage binairegénérateur de distorsion harmoniquegénérer volontairement de la distorsionindicateur de surchauffe à thyristorutilisation non conventionnelle des composants électroniquesune bascule CTPun drôle d'oiseauun classique d'Elektor qui émet des gazouillislampe au néon avec microcontrôleursource de courant stable en températureéliminer la dérive de température des CI sources de courantcorrecteur d'aigus d'ordre 2 réglablecorrection auditive pour personnes âgéesEdwin revientaprès 53 ans d'absencemachine à sous à levierun classique d'Elektor simple, amusant, nostalgique et éducatifrésistance variable simple à contrôle numériqueprotection contre les fuites d'eauprotection et alarme contre les fuites d'eauminuterie économique avec arrêt automatiquenécessite 0,0 mW en mode éteint !ChatGPT fait de l'ArduinoZD-mètremesure de la tension de coude des diodes Z ≤ 100 Vtesteur de servosContrôleur Windows ESP32 avec logiciel gratuitcircuits analogiques et mixtes de Microchipgestion de l'alimentation économe en énergie et traitement de signalstandards d'interfacesfiltrage et protection contre leurtensions pour le bus I²Cmoniteur de batterie Li-Ionl'indicateur de charge résiduelle fournit un retour d'information visuelsouris PS/2 comme codeur rotatif (et plus…)interrupteur crépusculaire simplepour moderniser vos luminaires ou vos installationscommande de pompe à eauprotégez-vous contre la montée des eauxboule de Noël solaire avec radio FMtout ce que vous voulez pour Noël, c'est celacapteur de vibrations avec relaistapotez ou secouez pour allumertesteur de continuitésensible et discretbouton-poussoir marche/arrêtContrôleur pour mini-perceuse 2023révision d'un projet de 1980détecteur de vibration numériquetransformez les vibrations en impulsions précisesprotection contre l'inversion de polarité avec faible chute de tensionétalon de fréquence peu coûteuxpetit simulateur DCF77une référence précise pour le Fake-Timele Lilygo T-PicoC3combine un RP2040 et un ESP32-C3 avec un écran TFT couleurHexadoku
Cette compilation comprend des articles intégrés de l'actuel Elektor entre juillet 2012 et novembre 2014.
Les documents suivants sont inclus dans le numéro de document (PDF) avec la fonction de navigation disponible et les articles sont intéressants.
Points forts
Un peu d'électronique et beaucoup d'experimentation : un livre ludique !
Gravité, réfraction, couleurs, vitesse du son, pendule, masse, élasticité, pression, aimants : une approche nouvelle et créative des leçons de physique
Matériel peu coûteux et facilement disponible
Logiciels gratuits
Kit disponible séparément
La rencontre de la physique et du microcontrôleur ne devrait plus étonner personne. Il existe d’excellents enregistreurs de données, ainsi que de nombreux programmes pour les traiter et les présenter sous forme de graphiques colorés et attrayants. La physique rébarbative, c’est fini !
J’ai choisi l’Arduino, car cette plate-forme est d’un accès facile et sa documentation abondante. La famille Arduino offre des ressources extraordinaires à un prix dérisoire. Ajoutez-y le logiciel gratuit CoolTerm, et vous pouvez enregistrer toutes les données de mesure pour les retravailler sous Excel et créer aisément des tableaux ou des graphiques.
Ce livre n’est pas un manuel de physique. Vous n’y trouverez ni équations différentielles ni courbes abstraites. Nous étudierons des phénomènes physiques de la vie de tous les jours. Sans chercher à être exhaustif, mon modeste ouvrage apporte aux leçons de physique une approche nouvelle et créative grâce aux techniques modernes de mesure et de traitement des données. L’électronique utilisée est simple, et constitue une belle démonstration des possibilités.
Raspberry Pi 5 fournit deux connecteurs MIPI à quatre voies, chacun pouvant prendre en charge une caméra ou un écran. Ces connecteurs utilisent le même format FPC « mini » à 22 voies au pas de 0,5 mm que le kit de développement de module de calcul et nécessitent des câbles adaptateurs pour se connecter aux connecteurs au format « standard » à 15 voies au pas de 1 mm du Raspbery Pi actuel. produits d'appareil photo et d'affichage.
Ces câbles adaptateurs mini vers standard pour caméras et écrans (notez qu'un câble de caméra ne doit pas être utilisé avec un écran, et vice versa) sont disponibles en longueurs de 200 mm, 300 mm et 500 mm.
Cet afficheur est compatible avec l’écran Nokia 5110 ce qui le rend parfaitement apte à afficher des données ou des graphiques de valeurs mesurées sur un microcontrôleur ou un ordinateur monocarte. De plus, l'écran est compatible avec tous les Raspberry Pi, Arduino, CubieBoard, Banana Pi et microcontrôleurs sans effort supplémentaire. Caractéristiques Processeur Philips PCD8544 Interface SPI Resolution 84 x 48 Pixels Alimentation 2,7-3,3 V Fonctions spéciales Rétroéclairage Compatible avec Raspberry Pi, Arduino, CubieBoard, Banana Pi and microcontroller Dimensions 45 x 45 x 14 mm Weight 14 g
Le DiP-Pi PIoT est un système de connectivité WiFi avancé avec des interfaces intégrées de capteurs qui couvrent la plupart des besoins possibles pour les applications IoT basées sur Raspberry Pi Pico. Il peut fournir au système jusqu'à 1,5 A à 4,8 V délivrés de 6 à 18 V CC sur divers schémas d'alimentation comme les voitures, les installations industrielles, etc., en plus du micro-USB d'origine du Raspberry Pi Pico. Il prend en charge la batterie LiPo ou Li-Ion avec chargeur automatique ainsi que la commutation automatique de l'alimentation par câble à l'alimentation par batterie ou inversement (fonctionnalité UPS) en cas de perte d'alimentation par câble. La source d'alimentation étendue (EPR) est protégée par un fusible réinitialisable PPTC, à polarité inversée, ainsi que par ESD. Le DiP-Pi PIoT contient un bouton RESET intégré au Raspberry Pi Pico ainsi qu'un interrupteur coulissant ON/OFF qui agit sur toutes les sources d'alimentation (USB, EPR ou batterie). L'utilisateur peut surveiller (via les broches A/D du Raspberry Pi Pico) le niveau de la batterie et le niveau EPR avec les convertisseurs A/D de PICO. Les deux entrées A/D sont pontées avec des résistances 0402 (0 OHM), donc si pour une raison quelconque l'utilisateur a besoin d'utiliser ces broches Pico pour sa propre application, elles peuvent être facilement retirées. Le chargeur charge automatiquement la batterie connectée (si utilisée), mais l'utilisateur peut en outre allumer/éteindre le chargeur si son application en a besoin.
DiP-Pi PIoT peut être utilisé pour les systèmes IoT alimentés par câble, mais également pour les systèmes purement alimentés par batterie avec ON/OFF. L'état de chaque source d'alimentation est indiqué par des LED informatives distinctes (VBUS, VSYS, VEPR, CHGR, V3V3). L'utilisateur peut utiliser n'importe quelle capacité de type LiPo ou Li-Ion ; Cependant, il faut veiller à utiliser des batteries protégées par PCB avec un courant de décharge maximum autorisé de 2 A. Le chargeur de batterie intégré est configuré pour charger la batterie avec un courant de 240 mA. Ce courant est réglé par une résistance, donc si l'utilisateur a besoin de plus/moins, il peut le changer lui-même. Le DiP-Pi PIoT est également équipé du module WiFi ESP8266 Clone avec antenne intégrée. Cette fonctionnalité ouvre une large gamme d'applications IoT basées sur celle-ci.
En plus de toutes les fonctionnalités ci-dessus, le DiP-Pi PIoT est équipé de capteurs DHT11/22 à 1 fil intégrés et d'interfaces de carte micro-SD. La combinaison des interfaces étendues d'alimentation, de batterie et de capteurs rend le DiP-Pi PIoT idéal pour les applications IoT telles que l'enregistreur de données, la surveillance des usines, la surveillance des réfrigérateurs, etc.
DiP-Pi PIoT est pris en charge avec de nombreux exemples prêts à l'emploi écrits en Micro Python ou C/C++.
Caractéristiques
Général
Dimensions 21 x 51 mm
Compatible avec le brochage Raspberry Pi Pico
LED informatives indépendantes (VBUS, VSYS, VEPR, CHGR, V3V3)
Bouton RESET du Raspberry Pi Pico
Interrupteur à glissière ON/OFF agissant sur toutes les sources d'alimentation (USB, EPR, Batterie)
Alimentation externe 6-18 VDC (voitures, applications industrielles, etc.)
Surveillance du niveau d'alimentation externe (6-18 VCC)
Surveillance du niveau de batterie
Protection contre l'inversion de polarité
Protection par fusible PPTC
Protection ESD
Chargeur de batterie automatique (pour LiPo, Li-Ion protégé par PCB – 2 A Max) Automatique/Contrôle utilisateur
Passage automatique de l'alimentation par câble à l'alimentation par batterie et inversement (fonctionnalité UPS)
Différents schémas d'alimentation peuvent être utilisés simultanément avec l'alimentation USB, l'alimentation externe et l'alimentation par batterie.
Convertisseur Buck 1,5 A à 4,8 V sur EPR
LDO intégré de 3,3 V à 600 mA
Connectivité WiFi clone ESP8266
Commutateur de téléchargement du micrologiciel ESP8266
Interface 1 fil intégrée
Interface DHT-11/22 intégrée
Options d'alimentation
Raspberry Pi Pico micro USB (via VBUS)
Alimentation externe 6-18 V (via prise dédiée – 3,4/1,3 mm)
Batterie externe
Types de batteries pris en charge
LiPo avec PCB de protection courant max 2A
Li-Ion avec PCB de protection courant max 2A
Périphériques et interfaces intégrés
Interface 1 fil intégrée
Interface DHT-11/22 intégrée
Prise pour carte Micro SD
Interface de programmation
Raspberry Pi standard Pico C/C++
Raspberry Pi standard Pico Micro Python
Compatibilité des cas
Boîtier DiP-Pi Plexi-Cut
Surveillance du système
Niveau de batterie via Raspberry Pi Pico ADC0 (GP26)
Niveau EPR via Raspberry Pi Pico ADC1 (GP27)
LED informatives
VB (VUSB)
États-Unis (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
Protection du système
Bouton de réinitialisation matérielle instantanée Raspberry Pi Pico
Protection ESD sur EPR
Protection contre l'inversion de polarité sur l'EPR
Fusible PPTC 500 mA @ 18 V sur EPR
Protection contre la surchauffe EPR/LDO
EPR/LDO À propos de la protection actuelle
Conception du système
Conçu et simulé avec PDA Analyzer avec l'un des outils CAO/FAO les plus avancés – Altium Designer
Origine industrielle
Construction de circuits imprimés
PCB de 2 oz en cuivre fabriqué pour une alimentation et un refroidissement appropriés en courant élevé
Technologie de piste de 6 mils/écart de 6 mils PCB à 2 couches
Finition de surface de PCB – Immersion Gold
Tuyaux thermiques en cuivre multicouche pour une réponse thermique accrue du système et un meilleur refroidissement passif
Téléchargements
Fiche de données
Manuel
Le Pico-10DOF-IMU est un module d'extension de capteur IMU spécialisé pour Raspberry Pi Pico. Il intègre des capteurs dont un gyroscope, un accéléromètre, un magnétomètre, un barocepteur et utilise le bus I²C pour la communication.
Combiné avec le Raspberry Pi Pico, il peut être utilisé pour collecter des données de détection environnementale telles que la température et la pression barométrique, ou pour bricoler facilement un robot qui détecte les gestes de mouvement et l'orientation.
Caractéristiques
En-tête Raspberry Pi Pico standard, prend en charge la série Raspberry Pi Pico ICM20948 intégré (gyroscope 3 axes, accéléromètre 3 axes et magnétomètre 3 axes) pour détecter les gestes de mouvement, l'orientation et le champ magnétique
Capteur de pression barométrique LPS22HB intégré, pour détecter la pression atmosphérique de l'environnement
Livré avec des ressources de développement et un manuel (exemples Raspberry Pi Pico C/C++ et MicroPython)
Caractéristiques
Tension de fonctionnement
5 V
Accéléromètre
Résolution : 16 bits Plage de mesure (configurable) : ±2, ±4, ±8, ±16g Courant de fonctionnement : 68,9 uA
Gyroscope
Résolution : 16 bits Plage de mesure (configurable) : ±250, ±500, ±1000, ±2000°/sec Courant de fonctionnement : 1,23 mA
Magnétomètre
Résolution : 16 bits Plage de mesure : ±4900µT Courant de fonctionnement : 90 uA
Barocepteur
Plage de mesure : 260 ~ 1 260 hPa Précision de mesure (température ordinaire) : ±0,025 hPa Vitesse de mesure : 1 Hz - 75 Hz
Cette carte à microcontrôleur de JOY-iT vous fait découvrir le monde de la programmation et vous offre la même puissance de calcul que la Mega 2560, mais avec un format plus petit. Elle possède également beaucoup plus de connecteurs que les cartes similaires (Arduino Uno). Elle est prise en charge par l'IDE Arduino. Elle peut être alimentée soit par le port USB, soit par les broches VIN. Cela vous permet de l'utiliser en toute sécurité avec de nombreux autres appareils, par exemple un ordinateur de bureau. Le Mega 2560 Pro se caractérise donc par une grande intégrabilité.
Caracteristiques
Microcontrôleur
ATmega2560 - 16AU
Stockage
Flash 256 KB, SRAM 8 KB, EEPRom 4 KB
Broches :Entrées/sorties numériquesSortie PWMEntrée analogique
541516
Compatible avec
Arduino, les ordinateurs de bureau, etc.
Caractéristiques particulières
Port USB ou broches d'alimentation pour l'alimentation
Convertisseur d'interface
Micro USB à USB UART
Dimension
55 x 38 mm
Articles livrés
Carte Mega 2560 Pro de JOY-iT avec connecteurs
Spécifications supplémentaires
7 - 9 V sur Vin, 5 V sur mUSB
Niveau logique
5 V
Courant de sortie
800 mA
Régulateur de tension
LDO (pour un maximum de 12 V crête)
Fréquence
16 MHz (12 MHz sont disponibles pour l'échange de données)
Téléchargements
Manuel
Le moniteur Raspberry Pi est un écran d'ordinateur Full HD de 15,6 pouces. Convivial, polyvalent, compact et abordable, c'est le compagnon d'affichage de bureau idéal pour les ordinateurs Raspberry Pi et d'autres appareils.
Avec un système audio intégré via deux haut-parleurs frontaux, des options de montage VESA et à vis ainsi qu'un support intégré à angle réglable, le moniteur Raspberry Pi est idéal pour une utilisation de bureau ou pour une intégration dans des projets et des systèmes. Il peut être alimenté directement à partir d'un Raspberry Pi ou par une alimentation séparée.
Caractéristiques
Écran IPS Full HD 1080p de 15,6 pouces
Support intégré à angle réglable
Audio intégré via deux haut-parleurs frontaux
Sortie audio via prise jack 3,5 mm
Entrée HDMI pleine taille
Options de montage VESA et à vis
Boutons de contrôle du volume et de la luminosité
Câble d'alimentation USB-C
Spécifications
Écran
Taille de l'écran : 15,6 pouces, format 16:9
Type de panneau : IPS LCD avec revêtement antireflet
Résolution d'affichage : 1920 x 1080
Profondeur de couleur : 16,2M
Luminosité (typique) : 250 nits
Gamme de couleurs : 45%
Angle de vision : 80°
Puissance
1,5 A/5 V
Peut être alimenté directement à partir d'un port USB Raspberry Pi (luminosité maximale de 60%, volume de 50%) ou par une alimentation séparée (luminosité maximale de 100%, volume de 100%)
Connectivité
Port HDMI standard (compatible 1.4)
Prise casque stéréo 3,5 mm
USB-C (alimentation)
Audio
2 haut-parleurs intégrés de 1,2 W
Prise en charge des fréquences d'échantillonnage de 44,1 kHz, 48 kHz et 96 kHz
Téléchargements
Datasheet
Raspberry Pi 5 fournit deux connecteurs MIPI à quatre voies, chacun pouvant prendre en charge une caméra ou un écran. Ces connecteurs utilisent le même format FPC « mini » à 22 voies au pas de 0,5 mm que le kit de développement de module de calcul et nécessitent des câbles adaptateurs pour se connecter aux connecteurs au format « standard » à 15 voies au pas de 1 mm du Raspbery Pi actuel. produits d'appareil photo et d'affichage.
Ces câbles adaptateurs mini vers standard pour caméras et écrans (notez qu'un câble de caméra ne doit pas être utilisé avec un écran, et vice versa) sont disponibles en longueurs de 200 mm, 300 mm et 500 mm.
Le PC a depuis longtemps dépassé sa fonction d’ordinateur pur et est devenu une machine à tout faire. Ce livre s'adresse aux personnes qui souhaitent contrôler du matériel existant ou construit par elles-mêmes depuis leur ordinateur.
En utilisant Visual Basic comme outil de développement rapide d'applications, nous vous emmènerons dans un voyage pour ouvrir le monde au-delà des connecteurs du PC. Après vous être familiarisé avec Visual Basic, son environnement de développement et l'ensemble d'outils qu'il propose, des éléments tels que les communications série, les ports d'imprimante, le bit-banging, l'émulation de protocole, l'interfaçage ISA, USB et Ethernet et le contrôle à distance des équipements de test sur le bus GPIB, sont couverts dans leur étendue. Chaque sujet est accompagné d'un code clair, prêt à être exécuté, et si nécessaire, des schémas sont fournis qui permettront à vos projets d'être opérationnels en un rien de temps.
Ce livre vous montrera des choses avancées telles que : utiliser des outils comme Debug pour trouver des adresses matérielles, configurer une communication à distance à l'aide de sockets TCP/IP et UDP et même écrire vos propres serveurs Internet. Ou que diriez-vous de connecter votre propre bloc de matériel via USB ou Ethernet et de le contrôler depuis Visual Basic. D'autres éléments tels que la communication entre programmes Internet, DDE et la nouvelle interface graphique de Windows XP sont également couverts. Tous les exemples sont prêts à être compilés en utilisant Visual Basic 5.0, 6.0, NET ou 2005. Une couverture complète est donnée sur les différences entre ce que l'on pourrait appeler Visual Basic Classic et Visual basic .NET/2005.
STmicroelectronics’ wireless IoT & wearable sensor development kit
‘SensorTile.box’ is a portable multi-sensor circuit board housed in a plastic box and developed by STMicroelectronics. It is equipped with a high-performance 32-bit ARM Cortex-M4 processor with DSP and FPU, and various sensor modules, such as accelerometer, gyroscope, temperature sensor, humidity sensor, atmospheric pressure sensor, microphone, and so on. SensorTile.box is ready to use with wireless IoT and Bluetooth connectivity that can easily be used with an iOS or Android compatible smartphone, regardless of the level of expertise of the users. SensorTile.box is shipped with a long-life battery and all the user has to do is connect the battery to the circuit to start using the box.
The SensorTile.box can be operated in three modes: Basic mode, Expert mode, and Pro mode. Basic mode is the easiest way of using the box since it is pre-loaded with demo apps and all the user has to do is choose the required apps and display or plot the measured data on a smartphone using an app called STE BLE Sensor. In Expert mode users can develop simple apps using a graphical wizard provided with the STE BLE Sensor. Pro mode is the most complex mode allowing users to develop programs and upload them to the SensorTile.box.
This book is an introduction to the SensorTile.box and includes the following:
Brief specifications of the SensorTile.box; description of how to install the STE BLE Sensor app on an iOS or Android compatible smartphone required to communicate with the box.
Operation of the SensorTile.box in Basic mode is described in detail by going through all of the pre-loaded demo apps, explaining how to run these apps through a smartphone.
An introduction to the Expert mode with many example apps developed and explained in detail enabling users to develop their own apps in this mode. Again, the STE BLE Sensor app is used on the smartphone to communicate with the SensorTile.box and to run the developed apps.
The book then describes in detail how to upload the sensor data to the cloud. This is an important topic since it allows the sensor measurements to be accessed from anywhere with an Internet connection, at any time.
Finally, Pro mode is described in detail where more experienced people can use the SensorTile.box to develop, debug, and test their own apps using the STM32 open development environment (STM32 ODE). The Chapter explains how to upload the developed firmware to the SensorTile.box using several methods. Additionally, the installation and use of the Unicleo-GUI package is described with reference to the SensorTile.box. This PC software package enables all of the SensorTile.box sensor measurements to be displayed or plotted in real time on the PC.
Le monde de l'électronique est à la fois vaste et… tout petit ! Voici un livre qui confirme ces deux constatations contradictoires. En effet, en électronique, tout touche à tout, d'une manière ou d'une autre. Le plus petit détail peut avoir les plus grandes conséquences, et pas toujours celles que l'on attendrait.
L'objectif de l'auteur de cette série d'articles autonomes intitulée hors-circuits, réunis ici en un livre, n'est pas de vous tenir par la main. Robert Lacoste, électronicien professionnel de haut-niveau, vous donne des pistes pour comprendre ce qui paraît mystérieux. Il vous guide juste assez pour vous permettre ensuite de progresser tout seul. Avec lui, non seulement vous repousserez vos propres limites, mais saurez aussi détecter celles du matériel et du logiciel que vous utilisez. En vous invitant à repasser par les notions de physique de base, il vous permettra de séparer les véritables progrès techniques des laïus commerciaux.
Les bases, ça peut mener loin
D'où vient la sensibilité d'un récepteur d'ondes radio ? Pourquoi le téléchargement d'une vidéo sur votre portable est-il beaucoup plus lent à la campagne qu'en centre-ville ? Si pour vous la réponse technique à des questions comme celles-ci (et bien d'autres que vous n'osez peut-être même pas vous poser) n'est pas évidente, ce livre vous aidera à y voir plus clair. Oui, on peut être à l'aise avec les microcontrôleurs, mais dérouté par le comportement d'un simple transistor. Vous sentez-vous concerné par de telles interrogations ? Ce livre est donc pour vous.
Sans aucune formule mathématique qui ne soit pas à la portée d'un lycéen, il balaye tout le champ de l'électronique, depuis l'analogique jusqu'au traitement numérique du signal en passant par le domaine si redouté des hautes-fréquences. La théorie ne s'y éloigne jamais beaucoup de la loi d'Ohm ! Avec des mots simples, l'auteur explique comment ça marche, pourquoi parfois ça ne marche pas comme on veut, et comment mieux utiliser différentes techniques dans vos propres projets pour que ça marche.
Liste des sujets abordés :
adaptation d'impédance : qu'est-ce-que c'est ?
petite introduction aux microrubans
jouons avec la réflectométrie temporelle
circuits imprimés : éviter les bourdes en HF et avec les fréquences élevées
le marquage CE pour les béotiens
le quartz
magie de la PLL VCO & PLL : pour obtenir des fréquences à la fois précises, stables et variables
synthèse numérique directe : une introduction
comprendre l'amplificateur à transistor : sexagénaire vaillant
ampli de classe A, B, C, D, E, F, G, H : quesako ?
le filtrage numérique sans stress : les filtres FIR
le filtrage numérique sans stress : les filtres CIC
le filtrage numérique sans stress : les filtres IIR
l'ABC des CA/N DNL, INL, SNR, SINAD, ENOB, SFDR et consorts
l'ABC des CA/N sigma-delta, quésaco ?
bruit et sensibilité des récepteurs
échange débit contre portée