Cet écran dispose d'une résolution IPS de 480x480 avec un écran tactile capacitif et un taux de rafraîchissement allant jusqu'à 75 FPS. Il est très lumineux et affiche 65 000 couleurs. L'encodeur rotatif mécanique prend en charge la rotation dans le sens horaire et antihoraire, et prend également en charge l'ensemble du processus d'appui, ce qui peut généralement être utilisé pour confirmer le processus.
Le module d'affichage est basé sur ESP32-S3 avec WiFi et Bluetooth 5.0 pour une connexion facile à Internet pour les projets IoT. Il peut être alimenté et programmé directement via le port USB. Il dispose également de deux ports d'extension, I²C et UART.
Caractéristiques
Contrôleur
ESP32-S3 WROOM-1-N16R8 (16 Mo de flash, 8 Mo de PSRAM, antenne PCB)
Sans fil
WiFi et Bluetooth 5.0
Résolution
480x480
Écran LCD
IPS LCD de 2,1", 65 000 couleurs
Pilote LCD
ST7701S
Taux de rafraîchissement
>70 FPS
Interface LCD
RGB 565
Panneau tactile
Panneau tactile capacitif 5 points
Pilote du panneau tactile
CST8266
USB
USB-C natif
Interfaces
1x I²C, 1x UART (connecteur 1,25 mm, 4 broches)
Prise en charge d'Arduino
Oui
Téléchargements
Wiki
Utilisation avec Squareline/LVGL
GitHub
Fiche technique ESP32-S3-WROOM-1
L'ESP32-S3 Parallel TFT offre non seulement plus de SRAM et de ROM (par rapport à la version S2), mais avec Bluetooth 5.0, il convient également aux applications telles que la surveillance et le contrôle locaux.
Le pilote LCD intégré ILI9488 utilise des lignes parallèles 16 bits pour communiquer avec ESP32-S3, l'horloge principale peut atteindre 20 MHz, ce qui rend l'affichage suffisamment fluide pour les affichages vidéo. Avec cet écran, vous pouvez créer davantage de projets d'affichage IoT.
Caractéristiques
Contrôleur : ESP32-S3-WROOM-1, antenne PCB, 16 Mo de Flash, 2 Mo de PSRAM, ESP32-S3-WROOM-1-N16R2
Sans fil : Wi-Fi et Bluetooth 5.0
Écran LCD : écran LCD TFT de 3,5 pouces
Résolution : 480x320
Couleur: RVB
Interface LCD : 16 bits parallèle
Pilote LCD : ILI9488
Écran tactile : capacitif
Pilote d'écran tactile : FT6236
USB : double USB Type-C (un pour USB vers UART et un pour USB natif)
Puce UART vers UART : CP2104
Alimentation : USB Type-C 5,0 V (4,0 V ~ 5,25 V)
Bouton : bouton Flash et bouton de réinitialisation
Interface Mabee : 1x I²C, 1x GPIO
Contrôleur de rétroéclairage : Oui
MicroSD : Oui
Prise en charge Arduino : Oui
Alimentation de type C : non pris en charge
Température de fonctionnement : -40℃ à +85℃
Dimension : 66 x 84,3 x 12 mm
Poids : 52g
Téléchargements
Fiche technique ESP32-S3
GitHub
Wiki
Code de démonstration LVGL
Ce panneau solaire est constitué d'un matériau monocristallin qui transforme l'énergie solaire avec un taux d'efficacité de 17 %. Sa surface en résine et son dos robuste le rendent adapté aux environnements extérieurs. Un connecteur JST de 2 mm est fixé au pénal, ce qui le rend parfait pour s'associer à la plupart des cartes prenant en charge l'utilisation de l'alimentation solaire.
La tension typique en circuit ouvert est d'environ 5 V, en fonction de l'intensité lumineuse. Lors des journées d'été lumineuses avec un ciel dégagé, la tension maximale en circuit ouvert peut atteindre 10 V. Pour éviter tout dommage à une carte connectée qui accepte une plage étroite de tension d'entrée ; vous devez vérifier si la tension en circuit ouvert est sûre avant toute connexion.
Caractéristiques
Dimensions : 160 x 138 x 2,5 mm
Tension typique : 5,5 V
Courant typique : 540 mA
Tension en circuit ouvert : 8,2 V
Tension de charge maximale : 6,4 V
L'ESP8266 d'Espressif est une puce Wi-Fi dotée d'une pile TCP/IP complète et d'une capacité de microcontrôleur. Il a fait des vagues dans la communauté des fabricants grâce à son prix bas.
Mais de nombreux développeurs étaient mécontents de la consommation électrique élevée de l'ESP8266. L'ESP32, équipé d'un coprocesseur ULP (Ultra Low Power), propose un remède à cela.
Cet e-book présente un certain nombre de projets mettant en vedette ESP32 et ESP8266 et démontre leurs performances dans différentes applications.
Des articles
Journal lumineux défiant512 pilotes LED pour Wi-Fi dotés d'un ESP-12F
Regarder avec VFD et ESP32À la précision d'Internet
L'ESP32 est idéal pour la consommationProgrammation du coprocesseur ULP
Adaptateur de programmation USB pour ESP8266Dans la famille Espressif, je voudrais l'ESP-01 et l'ESP-012
Émulateur DCF77 à ESP8266 Des ondes radio à l'internet
Thermostat sur le bureau WiFiSurveillance de la température flexible et programmable
Minutes pour le thermostat du bureau WiFiSept canaux de temporisation d'une précision atomique
Coûteau suisse pour microcontrôleursPlatformIO, un outil de programmation universel
Station Météo NucleoInformations mises à jour sur l'affichage sur l'écran LCD
AllerNotifierUne interface flexible pour les captureurs d'IdO
Regarder RGBChiffreAffiche avec 7 segments et couleur
ESP32 pour les utilitaires exigeantsProgrammation avec les outils d'origine
Mutation de l'ESP8266Découvrons l'ESP32 avec l'EDI d'Arduino
MicroPythonLe Python des petits systèmes
MicroPython et PyBoardLa LED qui clignote…Au serveur web qui fait clignoter une LED
Machine de surveillance pour ESP8266Domotique pour la transition énergétique
WLAN compact et autonomeOu comment utiliser la puce ESP8266 sans µC
ESP8266 sur la carte d'entrées/sorties AndroidLancez-vous dans la mise à jour du micrologiciel
WLAN pour microcontrôleursAvec la puce ESP8266
Carte de commande Wi-Fi : le retourRelies des objets à votre ordiphone
Lorsque le système sur puce (SoC) du Raspberry Pi 4 atteint une certaine température, il réduit sa vitesse de fonctionnement pour se protéger des dommages. En conséquence, vous n’obtenez pas des performances maximales avec l’ordinateur monocarte.
Fan SHIM est un accessoire abordable qui élimine efficacement l’étranglement thermique et améliore les performances du RPi 4. Il est assez simple de fixer le ventilateur SHIM au Raspberry Pi : le ventilateur SHIM utilise un connecteur à ajustement par friction, il se glisse donc simplement sur les broches de votre Pi et il est prêt à fonctionner, aucune soudure n'est nécessaire !
Le ventilateur peut être contrôlé par logiciel, vous pouvez donc l'ajuster à vos besoins, par exemple l'allumer lorsque le processeur atteint une certaine température, etc.
Vous pouvez également programmer la LED comme indicateur visuel de l'état du ventilateur.
L'interrupteur tactile peut également être programmé, vous pouvez donc l'utiliser pour allumer ou éteindre le ventilateur, ou pour basculer entre le mode déclenché par la température ou manuel.
Caractéristiques
Ventilateur 30 mm 5 V CC
4 200 tr/min
Débit d'air de 0,05 m³/min
Bruit acoustique de 18,6 dB (silencieux)
En-tête à ajustement par friction
Aucune soudure requise
LED RVB (APA102)
Interrupteur tactile
Assemblage de base requis
Compatible avec Raspberry Pi 4 (et 3B+, 3A+)
Bibliothèque et démon Python
Brochage
Contenu de la livraison
PCB de cale de ventilateur
Ventilateur 30 mm 5 V CC avec connecteur JST
Écrous et boulons M2.5
Assemblée
Le montage est vraiment simple et ne prend presque pas de temps
Avec le côté composant du PCB tourné vers le haut, poussez les deux boulons M2,5 à travers les trous par le bas, puis vissez la première paire d'écrous pour les fixer et servir d'entretoises.
Poussez les trous de montage du ventilateur vers le bas sur les boulons, avec le côté câble du ventilateur vers le bas (comme illustré) et le texte sur le ventilateur vers le haut. Fixez avec deux autres écrous.
Poussez le connecteur JST du ventilateur dans la prise du Fan SHIM.
Logiciel Avec l'aide de la bibliothèque Python, vous pouvez contrôler le ventilateur (marche/arrêt), la LED RVB et l'interrupteur. Vous trouverez également un certain nombre d'exemples illustrant chaque fonctionnalité, ainsi qu'un script pour installer un démon (un programme informatique qui s'exécute en arrière-plan) qui fait fonctionner le ventilateur en mode automatique, le déclenchant ou l'éteignant lorsque le processeur atteint une température seuil, avec une commande manuelle via l'interrupteur tactile.
Un moyen simple de maintenir les pièces au bas d'un PCB pendant le soudage
PartLift maintient les pièces traversantes en place pour libérer vos mains pendant que vous soudez les jambes. Un outil simple mais utile pour accompagner votre Stickvise. Le patin de base est en mousse de silicone antidérapante, le corps de l'outil est en ABS qui procure une très légère tension de ressort pour maintenir votre pièce en place. La pointe de l'outil est en silicone haute température qui résiste aux températures de soudure sans être endommagée.
Caractéristiques
PartLift maintient les pièces traversantes en place pendant le soudage
À utiliser avec un Stickvise ou tout autre support de PCB à profil bas
La panne est en silicone qui résiste aux températures de soudure
Le coussin de base est en mousse de silicone antidérapante
Spécifications
Matériel
Silicone
Dimensions
109 x 40 x 40 mm
Poids
59 g
Raspberry Pi Pico is a great solution for servo control. With the hardware PIO, the Pico can control the servos by hardware, without usage of times/ interrupts, and limit the usage of the MCU.Le pilotage des six servos de ce bras robotique nécessite très peu de capacité de la MCU, qui peut donc s'occuper d'autres tâches. Ce bras robotique à 6 DOF est un outil pratique pour l'enseignement et l'apprentissage de la robotique et de l'utilisation de Pico. Il y a cinq servos MG996s (quatre sont nécessaires dans l'assemblage et un comme pièce de rechange) et trois servos de 25 kg (deux nécessaires dans l'assemblage et un comme pièce de rechange). Notez que pour les servos, l'angle varie de 0° à 180°. Tous les servos doivent être préréglés à 90° (avec une impulsion de 1,5 ms à 50 Hz) avant le montage pour éviter d'endommager les servos pendant le mouvement. Ce produit comprend tous les éléments nécessaires à la création d'un bras robotique basé sur Pico et Micropython.Inclus1x Raspberry Pi Pico1x Raspberry Pi Pico pilote de servo1x Set '6 DOF Robot Arm'1x Alimentation 5 V/5 A2x Servo de rechangeTéléchargementsGitHubWikiGuide d'assemblageVideo d'assemblage
L'ESP32-WROOM-32, mesurant uniquement 25,2 mm x 18 mm, contient le SoC ESP32, une mémoire flash, des composants discrets de précision et une antenne PCB pour offrir des performances RF exceptionnelles dans les applications limitées en espace.
ESP32-WROOM-32 est un puissant module MCU Wi-Fi + BT + BLE générique qui cible une grande variété d'applications, allant des réseaux de capteurs basse consommation aux tâches les plus exigeantes, telles que l'encodage vocal, le streaming de musique et le décodage MP3.
Au cœur de ce module se trouve la puce ESP32-D0WDQ6. La puce intégrée est conçue pour être évolutive et adaptative. Il existe deux cœurs de processeur qui peuvent être contrôlés individuellement et la fréquence d'horloge est réglable de 80 MHz à 240 MHz. L'utilisateur peut également éteindre le processeur et utiliser le coprocesseur basse consommation pour surveiller en permanence les périphériques en cas de changement ou de franchissement de seuils. L'ESP32 intègre un riche ensemble de périphériques, allant des capteurs tactiles capacitifs aux capteurs Hall, en passant par l'interface de carte SD, Ethernet, SPI haut débit, UART, I²S et I²C.
L'intégration de Bluetooth, Bluetooth LE et Wi-Fi garantit qu'un large éventail d'applications peut être ciblée et que le module est à l'épreuve du temps. L'utilisation du Wi-Fi permet une vaste portée physique et une connexion directe à Internet via un routeur Wi-Fi, tandis que l'utilisation du Bluetooth permet à l'utilisateur de se connecter facilement au téléphone ou de diffuser des balises à faible consommation d'énergie pour sa détection.
Le courant de veille de la puce ESP32 est inférieur à 5 µA, ce qui la rend adaptée aux applications électroniques alimentées par batterie et portables. L'ESP32 prend en charge un débit de données allant jusqu'à 150 Mbps et une puissance de sortie de 20,5 dBm au niveau de l'antenne pour garantir la plage physique la plus large. En tant que telle, la puce offre des spécifications de pointe et les meilleures performances en termes d'intégration électronique, de portée, de consommation d'énergie et de connectivité.
Téléchargements
Datasheet
Le Pico Cube est une carte d'extension LED 4x4x4 pour Raspberry Pi Pico avec une tension de fonctionnement de 5 VCC. Le Pico Cube, avec ses 64 LED monochromes de couleur bleue, est une façon amusante d'apprendre la programmation. Il est conçu pour réaliser des opérations incandescentes avec une faible consommation d'énergie, une conception robuste et une installation facile qui permettent aux utilisateurs, enfants et adultes, d'apprendre les effets des lumières LED avec différents motifs de couleurs via la combinaison de logiciel et de matériel, c'est-à-dire le Raspberry Pi Pico.
Caractéristiques
Header standard Raspberry Pi Pico à 40 broches
Communication basée sur GPIO
64 LED monochromes haute intensité
Accès individuel à chaque LED
Accès à chaque couche
Spécifications
Tension de fonctionnement : 5 V
Couleur : bleue
Communication : GPIO
LEDs : 64
Inclus
1x Pico Cube PCB de base
4x PCB de couche
8x PCB de pilier
2x connecteurs mâles Berg (1 x 20)
2x connecteurs femelles Berg (1 x 20)
70 LEDs
Remarque : Le Raspberry Pi Pico n'est pas inclus.
Téléchargements
GitHub
Wiki
Cette carte permet au Raspberry Pi Pico (connecté via un connecteur) de commander deux moteurs simultanément avec un contrôle complet de marche avant, arrière et stop, ce qui la rend idéale pour les projets de buggy contrôlés par le Pico. Elle peut également être utilisée pour alimenter un moteur pas à pas. Elle comporte le circuit intégré de commande de moteur DRV8833, qui dispose d'une protection interne contre les courts-circuits, les surintensités et la chaleur. La carte dispose de 4 connexions externes aux broches GPIO et d'une alimentation 3 V et GND du Pico. Cela permet d'ajouter des options d'E/S supplémentaires pour vos projets de buggy, qui peuvent être lues ou contrôlées par le Pico. En outre, il y a un interrupteur marche/arrêt et une LED d'état d'alimentation, vous permettant de vérifier si la carte est sous tension et d'économiser vos piles lorsque votre projet n'est pas en cours d'utilisation. Pour utiliser la carte de commande de moteur, le Pico doit être doté d'un connecteur soudé et être fermement inséré. La carte fournit une alimentation régulée qui est utilisée par le connecteur à 40 voies pour alimenter le Pico, éliminant ainsi la nécessité d'alimenter le Pico directement. La carte de pilotage du moteur est alimentée soit par des bornes à vis, soit par un connecteur de type servo. Kitronik a développé un module micro-python et un exemple de code pour soutenir l'utilisation de la carte de commande de moteur avec le Pico. Ce code est disponible sur GitHub repo. Caractéristiques Une carte compacte mais dotée de nombreuses fonctionnalités, conçue pour être au cœur de vos projets de robots buggy avec le Raspberry Pi Pico. La carte peut commander 2 moteurs simultanément avec une contrôle complet de la marche avant, arrière et de l'arrêt. Il est équipé du circuit intégré de commande de moteur DRV8833, qui dispose d'une protection intégrée contre les courts-circuits, les surintensités et la température. En plus, la carte comporte un interrupteur marche/arrêt et une LED d'état d'alimentation. Alimentez la carte via un connecteur de type bornier. Les broches 3V et GND sont également sorties, ce qui permet d'alimenter des dispositifs externes. Codez-le avec MicroPython avec un éditeur tel que the Thonny editor. Dimensions: 63 mm (L) x 35 mm (W) x 11.6 mm (H) Téléchargement Fiche technique
Le Pico-GPS-L76B est un module GNSS conçu pour Raspberry Pi Pico, avec prise en charge de systèmes multi-satellites, notamment GPS, BDS et QZSS. Il présente des avantages tels qu'un positionnement rapide, une haute précision et une faible consommation d'énergie, etc. Combiné avec le Raspberry Pi Pico, il est facile d'utiliser la fonction de navigation globale.
Caractéristiques
En-tête Raspberry Pi Pico standard, prend en charge les cartes de la série Raspberry Pi Pico
Prise en charge des systèmes multi-satellites : GPS, BDS et QZSS
Technologie de prédiction FACILE et auto-suivi, aide à un positionnement rapide
AlwaysLocate, contrôleur intelligent de mode périodique pour économiser l'énergie
Prend en charge D-GPS, SBAS (WAAS/EGNOS/MSAS/GAGAN)
Débit en bauds de communication UART : 4 800 ~ 115 200 bps (9 600 bps par défaut)
Support de batterie intégré, prend en charge la cellule rechargeable ML1220, pour préserver les informations sur les éphémérides et les démarrages à chaud
4x LED pour indiquer l'état de fonctionnement du module
Livré avec des ressources de développement et un manuel (exemples Raspberry Pi Pico C/C++ et MicroPython)
Caractéristiques
GNSS
Bande de fréquence: GPS L1 (1575,42 MHz) BD2 B1 (1561,098 MHz)
Canaux : 33 canaux de suivi, 99 canaux d'acquisition, 210 canaux PRN
Code C/A
SBAS : WAAS, EGNOS, MSAS, GAGAN
Précision de la position horizontale (positionnement autonome)
<2,5 millions de CEP
Temps de première correction à -130 dBm (FACILE activé)
Démarrages à froid : <15s
Démarrages à chaud : <5s
Démarrages à chaud : <1 s
Sensibilité
Acquisition : -148 dBm
Suivi : -163 dBm
Réacquisition : -160 dBm
Performances dynamiques
Altitude (maximum) : 18 000 m
Vitesse (max): 515 m/s
Accélération (max): 4g
Autres
Interface de Communication
UART
Débit en bauds
4 800 ~ 115 200 bps (9 600 bps par défaut)
Taux de mise à jour
1 Hz (par défaut), 10 Hz (maximum)
Protocoles
NMEA 0183, PMTK
Tension d'alimentation
5 V
Courant de fonctionnement
13mA
Consommation globale de courant
< 40 mA à 5 V (mode continu)
Température de fonctionnement
-40 ℃ ~ 85 ℃
Dimensions
52 × 21 mm
Inclus
1x Pico-GPS-L76B
1x antenne GPS
Le FNIRSI HS-02A est une version améliorée du fer à souder HS-01 avec une meilleure prise en main et une pointe plus courte pour plus de confort et de précision lors de l'utilisation. Il dispose d'un écran couleur IPS HD plus grand de 0,96 pouces qui permet une meilleure visibilité des paramètres et de l'état. Avec une puissance de sortie de 100 W, le HS-02A chauffe rapidement et atteint sa température de fonctionnement en 2 secondes environ. La température est réglable dans une plage de 100 à 450°C pour répondre aux différentes exigences de soudure.
Caractéristiques
Température : 100 à 450°C
Réglage et contrôle précis de la température
Chauffage rapide
Coque métallique CNC
Puissance adaptative
100 W haute puissance
Protocoles: PD, QC
Spécifications
Plage de température
100-450°C
Tension de fonctionnement
9-20 V
Écran
Écran couleur IPS HD de 0,96 pouces
Alimentation
USB-C
Protocoles de charge rapide
PD/CQ
Puissance
100 W (maximum)
Dimensions
180 x 20 mm
Poids
61 g
Inclus
1x FNRISI HS-02A fer à souder intelligent
6x Pannes de fer à souder (HS02A-KU, HS02A-K, HS02A-JS, HS02A-I, HS02A-C2, HS02A-B)
1x Bloc d'alimentation USB-C de 100 W (UE)
1x Câble d'alimentation CC vers USB-C
1x Câble de chargement USC-C
1x Mini support pour fer à souder
1x Manuel
Téléchargements
Manual
Firmware V1.7
ESP32-S3-GEEK est une carte de développement geek avec port USB-A intégré, écran LCD de 1,14 pouces, emplacement pour carte TF et autres périphériques. Il prend en charge le WiFi 2,4 GHz et le BLE 5, avec 16 Mo de mémoire Flash et de stockage intégrés. 2 Mo de PSRAM, fournit un port I²C, un port UART et un en-tête GPIO pour plus de possibilités pour votre projet.
Caractéristiques
Adopte la puce ESP32-S3R2 avec un processeur double cœur Xtensa LX7 32 bits, capable de fonctionner à 240 MHz
512 Ko de SRAM, 384 Ko de ROM, 2 Mo de PSRAM intégrée et 16 Mo de mémoire Flash intégrée
Écran LCD IPS couleur 1,14 pouces intégré, 240 x 135 pixels, 65k pixels
Communication sans fil Wi-Fi 2,4 GHz et Bluetooth LE intégrée
Le Wi-Fi prend en charge l'infrastructure BSS dans les modes Station, SoftAP et Station + SoftAP
Le Wi-Fi prend en charge le mode 1T1R avec un débit de données allant jusqu'à 150 Mbit/s
Bluetooth prend en charge le mode haute puissance (20 dBm)
Mécanisme de coexistence interne entre Wi-Fi et Bluetooth pour partager la même antenne
Port UART à 3 broches intégré, connecteur GPIO à 3 broches et port I²C à 4 broches
Équipé d'un boîtier en plastique et de câbles
Fournit une démo et des ressources Open Source en ligne, plus pratiques pour l'apprentissage et le développement
Dimensions : 61,0 x 24,5 x 9,0 mm
Téléchargements
Wiki
There are many so-called 'Arduino compatible' platforms on the market. The ESP8266 – in the form of the WeMos D1 Mini Pro – is one that really stands out. This device includes WiFi Internet access and the option of a flash file system using up to 16 MB of external flash memory. Furthermore, there are ample in/output pins (though only one analogue input), PWM, I²C, and one-wire. Needless to say, you are easily able to construct many small IoT devices!
This book contains the following builds:
A colourful smart home accessory
refrigerator controller
230 V power monitor
door lock monitor
and some further spin-off devices.
All builds are documented together with relevant background information for further study. For your convenience, there is a small PCB for most of the designs; you can also use a perf board. You don’t need to be an expert but the minimum recommended essentials include basic experience with a PC, software, and hardware, including the ability to surf the Internet and assemble PCBs.
And of course: A handle was kept on development costs. All custom software for the IoT devices and PCB layouts are available for free download from at Elektor.com.
The Naturebytes Wildlife Cam Case is the perfect weatherproof housing to take your Raspberry Pi, camera and sensors outdoors.
It is compatible with all Raspberry Pi models, it has an IR Lens to optimise motion detection, a camera strap so you can set up your ideal wildlife shots or you can take advantage of the electronics mount, with space for additional sensors, power solutions and upgrades….and it looks awesome!
Caractéristiques
Weatherproof (certified IP55)
Electronics mount compatible with Raspberry Pi models (including all model A+, B, B, B+ and Zero models)
Fresnel IR lens to optimise motion detection
Clip and hinge opening for easy access to the Pi’s ports and internal components
Nylon camera attachment strap for securing outside
Can be secured with a padlock
Fasteners and spacers for attaching electronics
Rear cable access
Rear attachments for modular upgrades
No soldering required
Téléchargements
Assembly Guides
Raspberry Pi Pico Wireless Pack se fixe à l'arrière de votre Pico et utilise une puce ESP32 pour permettre à votre Pico de se connecter aux réseaux sans fil 2,4 GHz et de transférer des données. Il existe un emplacement pour carte microSD si vous souhaitez stocker beaucoup de données localement, ainsi qu'une LED RVB (pour les mises à jour d'état) et un bouton (utile pour des choses comme activer/désactiver le Wi-Fi).
Idéal pour adapter rapidement un projet Pico existant afin d'avoir une fonctionnalité sans fil, le Raspberry Pi Pico Wireless Pack serait utile pour envoyer des données de capteurs dans des systèmes domotiques ou des tableaux de bord, pour héberger une page Web à partir d'une boîte d'allumettes ou pour permettre à votre Pico d'interagir avec des API en ligne. .
Caractéristiques
Module ESP32-WROOM-32E pour connectivité sans fil (connecté via SPI) ( fiche technique )
1x bouton tactile
LED RVB
Emplacement pour carte Micro SD
Connecteurs femelles pré-soudés pour fixer votre Raspberry Pi Pico
Entièrement assemblé
Aucune soudure requise (tant que votre Pico est équipé de broches d'en-tête attachées)
Compatible avec Raspberry Pi Pico
Dimensions : environ 53 x 25 x 11 mm (L x L x H, y compris les en-têtes et les composants)
Bibliothèques C++ et MicroPython
Grâce à ses capacités I²C, ce HAT PWM économise les broches GPIO du Raspberry Pi, vous permettant de les utiliser à d’autres fins. Le Servo pHAT ajoute également une connexion de terminal série, qui vous permettra de monter un Raspberry Pi sans avoir à le connecter à un moniteur et un clavier. Nous avons fourni un connecteur Qwiic pour une interface facile avec le bus I²C en utilisant le système Qwiic et un connecteur à 4 broches pour se connecter au Sphero RVR. L’alimentation du Servo pHAT SparkFun peut être fournie via un connecteur USB-C. Cela alimentera uniquement les servomoteurs ou les servomoteurs et le Raspberry Pi connecté à la HAT. Nous sommes passés à l’USB-C pour vous permettre d’apporter plus de courant à vos servos comme jamais auparavant. Ce connecteur USB-C peut également brancher le Pi via une connexion de port série pour éviter d’avoir à utiliser un moniteur et un clavier pour configurer le Pi. Pour alimenter uniquement le rail d’alimentation servo (et non le rail d’alimentation 5V du Pi), vous devez couper une petite trace sur le cavalier d’isolement. Cela vous permet de piloter des charges plus lourdes provenant de plusieurs ou de plus grands servos. Nous avons même ajouté des circuits de protection électrique à la conception pour éviter d’endommager les sources d’énergie. Chacun des 16 axes de servomoteur de ce pHAT a été espacé sur le brochage standard des servomoteurs à 3 axes (sol, 5V, signal) pour faciliter la fixation de vos servomoteurs. Le Servo pHAT est de la même taille et du même facteur de forme qu’un Raspberry Pi Zero et Zero W, mais il peut également fonctionner avec un Raspberry Pi régulier. Caractéristiques : 16 canaux PWM, contrôlables sur I²C Connecteur Qwiic Connecteur RVR à 4 broches pour connexion à Sphero RVR Connecteur USB-C Connecteur GPIO 40 broches pour connexion à Raspberry Pi Série USB CH340C SOIC16 Mise à jour des circuits de conversion de niveau logique Circuits de protection électrique
Basée sur la technologie thermique directe, l'imprimante d'étiquettes Niimbot D110 offre une expérience d'impression sans encre, toner ou ruban, ce qui en fait une solution économique par rapport aux imprimantes traditionnelles. Sa taille compacte et son poids léger la rendent facile à transporter et lui permettent de se glisser dans n'importe quelle poche.
Grâce à la connectivité Bluetooth et à une batterie intégrée de 1500 mAh, cette mini-imprimante sans fil vous permet d'imprimer jusqu'à 10 mètres de distance, ce qui vous offre une grande flexibilité en déplacement, que vous imprimiez à partir de votre smartphone ou de votre tablette.
L'application « Niimbot » (disponible pour iOS et Android) offre une variété de modèles gratuits pour personnaliser les étiquettes.
Spécifications
Modèle
D110_M (version améliorée 2024)
Matériel
ABS
Résolution
203 DPI
Vitesse d'impression
30-60 mm/s
Largeur d'impression
12-15 mm
Technologie d'impression
Thermique
Température de fonctionnement
5°C ~ 45°C
Capacité de la batterie
1500 mAh
Interface de chargement
USB-C
Temps de charge
2 heures
Connexion
Bluetooth 4.0
Distance sans fil
10 m
Dimensions
98 x 76 x 30 mm
Poids
149 g
Inclus
1x Niimbot D110 imprimante d'étiquettes
1x Ruban d'étiquettes (12 x 40 mm)
1x Câble USB
1x Manuel
Téléchargements
iOS App
Android App
Créez des éclairs d'un simple effleurement des doigts ou d'un claquement de mains
La Boule Magique Plasma est un gadget technologique de pointe et une œuvre d'art captivante. À l'intérieur de la sphère de verre, un mélange gazeux spécial crée des effets lumineux fascinants lorsqu'il est activé par un courant haute fréquence, comme si vous teniez un orage entre vos mains.
Parfait pour la maison, le bureau, l'école, l'hôtel ou le bar, c'est un élément décoratif unique qui éveille la curiosité. Envie d'un cadeau original et original ? La Boule Magique Plasma est un excellent choix pour vos proches.
Malgré ses effets époustouflants, la Boule Magique Plasma consomme très peu d'électricité. Le verre lui-même est fabriqué dans un matériau spécialement durci et très résistant, capable de supporter des températures allant jusqu'à 522°C.
Spécifications
Matériau
Plastique
Diamètre de la boule
15 cm (6 pouces)
Tension d'entrée
220 V
Tension de sortie
12 V
Puissance
15 W
Dimensions
25 x 15,5 x 15,5 cm
Le kit Arduino pour étudiants est un outil d'apprentissage à distance pratique, étape par étape, destiné aux plus de 11 ans : initiez-vous aux bases de l'électronique, de la programmation et du codage à domicile. Aucune connaissance ou expérience préalable n'est nécessaire, car le kit vous guide pas à pas. Les éducateurs peuvent enseigner à leur classe à distance à l'aide des kits, et les parents peuvent utiliser le kit comme un outil d'enseignement à domicile pour que leur enfant apprenne à son propre rythme. Tout le monde gagnera en confiance en matière de programmation et d'électronique grâce aux leçons guidées et à l'expérimentation libre.
Apprenez les bases de la programmation, du codage et de l'électronique, notamment le courant, la tension et la logique numérique. Aucune connaissance ou expérience préalable n'est nécessaire car le kit vous guide pas à pas.
Vous recevrez tout le matériel et le logiciel nécessaires pour une personne, ce qui en fait un outil idéal pour l'enseignement à distance, l'enseignement à domicile et l’auto-apprentissage. Il y a des leçons et des exercices étape par étape, et pour une expérience complète et approfondie, il y a aussi un contenu supplémentaire comprenant des spots d'invention, des concepts et des faits intéressants sur l'électronique, la technologie et la programmation.
Les leçons et les projets peuvent être progressifs en fonction des capacités de chacun, ce qui leur permet d'apprendre à la maison à leur propre niveau. Le kit peut également être intégré à différentes matières comme la physique, la chimie et même l'histoire. En fait, il y a suffisamment de contenu pour un semestre entier.
Comment utiliser le kit pour l’enseignement à distance par les éducateurs
La plate-forme en ligne contient tout le contenu dont vous avez besoin pour enseigner à distance : du contenu d'orientation exclusif, des conseils pour l'apprentissage à distance, neuf leçons de 90 minutes et deux projets ouverts. Chaque leçon s'appuie sur la précédente, offrant ainsi une nouvelle occasion d'appliquer les compétences et les concepts que les élèves ont déjà appris. Ils disposent également d'un carnet de bord à remplir au fur et à mesure qu'ils travaillent sur les leçons.
Au début de chaque leçon, vous trouverez une vue d'ensemble, une estimation du temps nécessaire à la réalisation du cours et les objectifs d'apprentissage. Tout au long de chaque leçon, vous trouverez des conseils et des informations qui vous aideront à faciliter votre apprentissage. Des réponses clés et des idées pour approfondir un peu plus sont également fournies.
Comment le kit aide les parents à scolariser leur enfant à la maison
Il s'agit d'un outil d'apprentissage à distance pratique, étape par étape, qui aidera votre enfant à apprendre les bases de la programmation, du codage et de l'électronique à la maison. En tant que parent, vous n'avez besoin d'aucune connaissance ou expérience préalable, car vous êtes guidé pas à pas. Le kit est directement lié au programme scolaire, de sorte que vous pouvez être sûr que vos enfants apprennent ce qu'ils doivent apprendre, et il leur donne l'occasion de prendre confiance dans la programmation et l'électronique. Vous les aiderez également à acquérir des compétences essentielles telles que l'esprit critique et la résolution de problèmes.
Auto-apprentissage avec le kit étudiant Arduino
Les élèves peuvent utiliser ce kit pour apprendre eux-mêmes les bases de l'électronique, de la programmation et du codage. Comme toutes les leçons suivent des instructions étape par étape, il est facile pour eux de travailler et d'apprendre par eux-mêmes. Ils peuvent travailler à leur propre rythme, s'amuser avec tous les projets du monde réel et accroître leur confiance au fur et à mesure. Ils n'ont pas besoin de connaissances préalables, car tout est clairement expliqué, le codage est pré-écrit et il existe un vocabulaire de concepts auquel se référer.
Le kit étudiant Arduino est livré avec plusieurs pièces et composants qui seront utilisés pour construire des circuits tout en complétant les leçons et les projets tout au long du cours.
Inclus dans le kit
Code d'accès à un contenu en ligne exclusif comprenant des notes d'orientation pédagogique, des leçons étape par étape et du matériel supplémentaire tel que des ressources, des réalisations vedettes et un carnet de bord numérique avec des solutions.
1x Arduino Uno.
1x Câble USB.
1x Base de montage de la carte.
1x Multimètre.
1x Connecteur pile 9 V.
1x Pile 9 V.
20x Leds (5x rouges, 5x vertes, 5x jaunes & 5x bleues).
5x Résistances 560 Ω.
5x Résistances 220 Ω.
1x Plaque d’essais 400 points.
1x Résistance 1 kΩ.
1x Résistance 10 kΩ.
1x Petit servo-moteur.
2x Potentiomètres 10 kΩ.
2x Potentiomètres à bouton.
2x Condensateurs 100 uF
Fils de liaison à âme pleine.
5x Boutons-poussoirs.
1x Phototransistor
2x Résistances 4.7 kΩ
1x Fil cavalier noir.
1x Fil cavalier rouge.
1x Capteur de température.
1x Buzzer piézoélectrique.
1x Cordon mâle vers femelle rouge.
1x Cordon femelle vers mâle noir.
3x Écrous et boulons.
Votre maison est hantée ? Of, beter gezegd, ben je ervan overtuigd dat het spookt in je huis, maar heb je het nooit kunnen bewijzen omdat je nooit een camera hebt gehad die geïntegreerd is met je Raspberry Pi Zero, maar toch klein genoeg is om de spoken niet op te Marques?
Heureusement, la caméra espion pour Raspberry Pi Zero est plus petite qu'une vignette avec une résolution suffisamment élevée pour voir des personnes, des fantômes ou tout ce que vous recherchez. Il a à peu près la taille d'une caméra de téléphone portable - le module ne mesure que 8,6 x 8,6 mm - avec seulement un câble de 2', vous pouvez donc créer une petite caméra espion extra compacte et sournoise. Il a un angle d'ouverture de 160 degrés pour un effet fisheye très large/déformé, idéal pour les systèmes de sécurité ou pour visualiser une grande zone du salon ou de la route. Comme la carte caméra Raspberry Pi, elle se connecte à votre Raspberry Pi Zero v1.3 ou Zero W via la petite connexion située sur le bord de la carte à proximité de la connexion « PWR in ». Cette interface utilise l'interface CSI spéciale, spécialement conçue pour l'interface avec les caméras. Le bus CSI peut gérer des débits de données extrêmement élevés et ne transporte que des données de pixels.
La caméra est connectée au processeur BCM2835 du RPi via le bus CSI, une connexion à bande passante plus élevée qui renvoie les données de pixels de la caméra au processeur. Ce bus passe par le câble ruban qui relie la carte caméra au Pi. Les câbles plats sont compatibles avec le RPi Zero v1.3 et le RPi Zero W.
Le capteur lui-même a une résolution native de 5 mégapixels et intègre un objectif à mise au point fixe. Elle a des spécifications similaires à celles de la caméra RPi d'origine, mais n'est pas aussi haute résolution que la nouvelle caméra RPi v2 !
Caractéristiques
Dimensions du module caméra : 8,6 x 8,6 mm
Diamètre de la lentille : 10 mm
Longueur totale : 60 mm
Angle d'ouverture de l'objectif : 160 degrés
Poids : 1,9 g
Les fonctions
Pie Buzzer : agit comme une simple sortie audio
Port micro-USB
Bouton programmable
12 x LED : fournit une sortie visuelle à bord
Caractéristiques
Microcontrôleur
ATmega328P
Programme IDE
EDI Arduino
Tension de fonctionnement
5 V
E/S numériques
20
MLI
6
Entrée analogique
6 (10 bits)
UART
1
IPS
1
I2C
1
Interruption externe
2
Mémoire flash
32 Ko
SRAM
2 Ko
EEPROM/Flash de données
1 Ko
Vitesse de l'horloge
16 MHz
Broche d'E/S d'alimentation CC
20mA
Source de courant
USB uniquement
Courant continu pour 5 V
Source USB
Courant continu pour 3,3 V
500mA
Puce USB vers série
CH340G
LED programmable
12 sur les broches numériques 2 à 13
Bouton-poussoir programmable
1 sur la broche numérique 2
Buzzer à tarte
1 sur la broche numérique 8
Arduino contre Maker Uno
Le SSD Raspberry Pi offre des performances exceptionnelles pour les applications gourmandes en I/O sur Raspberry Pi 5 et d'autres appareils, y compris un démarrage ultra-rapide lors du démarrage à partir d'un SSD.
Il s'agit d'un SSD fiable, réactif et hautes performances, conforme à la norme PCIe Gen 3, capable d'effectuer un transfert de données rapide, également disponible avec une capacité de 512 Go.
Caractéristiques
40k IOPS (lecture aléatoire de 4 Ko)
70k IOPS (d'écritures aléatoires de 4 Ko)
Downloads
Datasheet