LuckFox Pico Mini est une micro-carte de développement Linux compacte basée sur la puce Rockchip RV1103, offrant une plate-forme de développement simple et efficace pour les développeurs. Il prend en charge une variété d'interfaces, notamment MIPI CSI, GPIO, UART, SPI, I²C, USB, etc., ce qui est pratique pour un développement et un débogage rapides.
Caractéristiques
Cœur ARM Cortex-A7 monocœur 32 bits avec NEON et FPU intégrés
Le NPU de 4e génération intégré, développé par Rockchip, offre une précision de calcul élevée et prend en charge la quantification hybride int, int8 et int16. La puissance de calcul d'int8 est de 0,5 TOPS, et jusqu'à 1,0 TOPS avec int4
ISP3.2 de troisième génération intégré et auto-développé, prend en charge 4 mégapixels, avec plusieurs algorithmes d'amélioration et de correction d'image tels que HDR, WDR, réduction du bruit à plusieurs niveaux, etc.
Offre de puissantes performances d'encodage, prend en charge le mode d'encodage intelligent et l'économie de flux adaptative en fonction de la scène, permet d'économiser plus de 50% du débit binaire du mode CBR conventionnel afin que les images de la caméra soient en haute définition avec une taille plus petite, et doublent le stockage. espace
Le microcontrôleur RISC-V intégré prend en charge une faible consommation d'énergie et un démarrage rapide, prend en charge une capture d'image rapide de 250 ms et charge simultanément la bibliothèque de modèles AI pour réaliser la reconnaissance faciale "en une seconde"
DRAM DDR2 16 bits intégrée, capable de supporter des bandes passantes mémoire exigeantes
Intégré avec POR intégré, codec audio et MAC PHY
Spécifications
Processeur
ARM Cortex-A7, processeur monocœur 32 bits, 1,2 GHz, avec NEON et FPU
NPU
NPU Rockchip 4e génération, prend en charge int4, int8, int16 ; jusqu'à 1.0 TOPS (int4)
ISP
ISP3.2 de troisième génération, entrée jusqu'à 4 MP à 30 ips, HDR, WDR, réduction du bruit
RAM
64 Mo DDR2
Stockage
Flash SPI NAND de 128 Mo
USB
Hôte/périphérique USB 2.0 via Type-C
Interface de la caméra
MIPI CSI 2 voies
Broches GPIO
17 broches GPIO
Consommation électrique
MCU RISC-V à faible consommation pour un démarrage rapide
Dimensions
28 x 21 mm
Téléchargements
Wiki
YDLIDAR X4PRO est un télémètre bidimensionnel à 360 degrés. Basé sur le principe de la triangulation, il est équipé d'une optique, d'une électronique et d'une conception algorithmique associées pour atteindre une mesure de distance haute fréquence et haute précision. La structure mécanique tourne à 360 degrés pour produire en continu les informations d'angle ainsi que les données du nuage de points de l'environnement balayé tout en mesurant les distances.
Caractéristiques
Mesure de distance de balayage omnidirectionnel à 360 degrés
Erreur de distance réduite, performances stables et grande précision
Large plage de mesure
Grande résistance aux interférences lumineuses ambiantes
Consommation d'énergie réduite, petite taille et longue durée de vie
Puissance laser conforme aux normes de sécurité laser de Classe I
Vitesse du moteur réglable, fréquence de balayage de 6 à 12 Hz
Mesure de distance rapide, fréquence de mesure allant jusqu'à 5 kHz
Applications
Navigation et évitement d'obstacles pour les robots
Enseignement et recherche ROS pour les robots
Sécurité régionale
Numérisation de l'environnement et reconstruction 3D
Navigation et évitement d'obstacles pour les robots aspirateurs/robots d'apprentissage ROS
Spécifications
Fréquence de mesure
5000 Hz
Fréquence de balayage
6-12 Hz
Distance de mesure
0,12 à 10 m
Angle de balayage
360°
Résolution d'angle
0,43-0,85°
Dimensions
110,6 x 71,1 x 52,3 mm
Téléchargements
Fiche technique
Manuel de l'utilisateur
Manuel de développement
SDK
Outil
ROS
Après la mise sous tension, le YDLIDAR G4 commence à tourner et à scanner l'environnement environnant. La distance de numérisation est de 16 m et l'appareil a une vitesse de numérisation de 9 000 fois par seconde.
Il analyse minutieusement son environnement et peut y détecter les plus petits objets. Grâce à son moteur sans balais extrêmement précis et à son disque codeur montés sur roulements, il fonctionne très bien et a une durée de vie allant jusqu'à 500 000 heures de fonctionnement.
Le G4 est une solution peu coûteuse pour les projets nécessitant une détection d'obstacles, un évitement d'obstacles et/ou une localisation et une cartographie simultanées (SLAM). Tous les produits YDLIDAR sont prêts pour ROS.
Caractéristiques
Scanner 2D à 360 degrés
Performances stables, haute précision
Portée de 16 m Forte protection contre les interférences de la lumière ambiante
Entraînement par moteur sans balais, performances stables
Norme de sécurité laser FDA Classe I
Balayage omnidirectionnel à 360 degrés, fréquence de balayage adaptative de 5 à 12 Hz
Technologie optomagnétique
Communication de données sans fil
Vitesse de numérisation de 9 000 Hz
Documentation
Lecteur ROS
Page de téléchargement d'Ydlidar
Dans la section « Téléchargements » ci-dessous, vous trouverez la fiche technique ainsi que les manuels d'utilisation et de développement.
Maker Line est un capteur de ligne doté d'un réseau de 5 capteurs IR capable de suivre des lignes de 13 mm à 30 mm de largeur.
L'étalonnage du capteur a également été simplifié. Il n'est pas nécessaire d'ajuster le potentiomètre pour chaque capteur IR. Il vous suffit d'appuyer sur le bouton de calibrage pendant 2 secondes pour accéder au mode de calibrage. Ensuite, vous devez faire glisser les capteurs sur la ligne, appuyer à nouveau sur le bouton et vous êtes prêt à partir.
Les données d'étalonnage sont stockées dans l'EEPROM et restent intactes même lorsque le capteur est éteint. L'étalonnage ne doit donc être effectué qu'une seule fois, sauf si la hauteur du capteur, la couleur de la ligne ou la couleur de fond ont changé. Maker Line prend également en charge deux sorties : 5 sorties numériques pour l'état de chaque capteur indépendamment, ce qui est similaire au capteur IR classique, mais vous bénéficiez d'un étalonnage facile, et également une sortie analogique, où la tension représente la position de la ligne. La sortie analogique offre également une résolution plus élevée par rapport aux sorties numériques séparées. Ceci est particulièrement utile lorsqu’une grande précision est requise lors de la construction d’un robot suiveur de ligne avec contrôle PID.
Caractéristiques
Tension de fonctionnement : compatible DC 3,3 V et 5 V (avec protection contre l'inversion de polarité)
Largeur de trait recommandée : 13 mm à 30 mm
Couleur de ligne sélectionnable (claire ou foncée)
Distance du capteur (hauteur) : 4 mm à 40 mm (Vcc = 5 V, ligne noire sur surface blanche)
Taux de rafraîchissement du capteur : 200 Hz
Processus d'étalonnage facile
Types de sortie double : 5 sorties numériques représentent chaque état du capteur IR, 1 sortie analogique représente la position de la ligne.
Prend en charge une large gamme de contrôleurs, tels que Arduino, Raspberry Pi, etc.
Documentation
Fiche de données
Tutoriel : Construire un robot de suivi de ligne bon marché
Caractéristiques
Capteur de CO2 à technologie NDIR : intégré à Sensirion SCD30
Multi-fonction : intègre un capteur de température et d'humidité sur le même module de capteur
Haute précision et grande exactitude de mesure : ± (30 ppm + 3%) entre 400 ppm et 10000 ppm
Stabilité supérieure : détection à double canal
Facile à utiliser pour vos projets : interface numérique I²C, facile à utiliser sur une platine d'essai, compatible avec Grove
Meilleur rapport performance/prix
Idées d'application
Purificateur d'air
Surveillance environnementale
Système de surveillance environnementale des plantes
Station météo Arduino
Cette caméra adopte la technologie d'imagerie 3D à lumière structurée binoculaire pour obtenir des images de profondeur et réaliser la fonction de modélisation des informations de profondeur. Il est équipé d'une puce de calcul de profondeur dédiée et est spécialement optimisé pour éviter les obstacles des robots. La caméra est de taille compacte, facile à intégrer, avec une interface de sortie standard USB2.0, offrant aux utilisateurs un haut degré de flexibilité. Il peut être adapté à des environnements complexes tels que des environnements entièrement noirs, en intérieur avec une lumière forte ou une lumière faible, un contre-jour ou une lumière douce, même en semi-extérieur, ce qui présente une large gamme d'applications.
Caractéristiques
Offre une sortie d’image haute résolution de 1 280 x 920
Utilise la technologie d'imagerie 3D à lumière structurée binoculaire
Interférence intrépide de la lumière ambiante
Les processeurs de calcul approfondi utilisent des puces dédiées hautes performances
Interface de sortie standard USB2.0
Caractéristiques
Distance de détection : 20-250 cm
Erreur de précision : <1,5 cm
Résolution : 1280 x 920 pixels
VOHF : 78 ±3°
FOV : 60 ±3°
Puissance : 1,5 W
Source de lumière active : Spectre : 830-850 nm | Puissance : <1,5 W
Anti-poussière et étanche : IP65
ESD : Décharge par contact : ±8 KV | Antiaérien : ±12 KV
Interface : USB2.0
Température de fonctionnement : -10 ~ 50 °C
Humidité de fonctionnement : 0 ~ 80 RH
Température de stockage : -20 ~ 80 °C
Poids : 96g
Téléchargements
Fiche de données
Manuel de l'Utilisateur
Manuel de développement
SDK
Outil
ROS
La SparkFun Thing Plus Matter est la première carte facilement accessible de ce type qui combine Matter et l'écosystème Qwiic de SparkFun pour le développement agile et le prototypage de dispositifs IoT basés sur Matter. Le module sans fil MGM240P de Silicon Labs offre une connectivité sécurisée pour les deux protocoles 802.15.4 avec communication Mesh (Thread) et Bluetooth Low Energy 5.3. Le module est prêt à être intégré au protocole Matter IoT de Silicon Labs pour la domotique.
Qu'est-ce que Matter ? En termes simples, Matter permet un fonctionnement cohérent entre les appareils domestiques intelligents et les plateformes IoT sans connexion Internet, même s'ils proviennent de fournisseurs différents. Ce faisant, Matter est capable de communiquer entre les principaux écosystèmes IoT afin de créer un protocole sans fil unique, facile à utiliser, fiable et sécurisé.
La Thing Plus Matter (MGM240P) comprend des connecteurs Qwiic et de batterie LiPo, ainsi que plusieurs connecteurs GPIO capables d'un multiplexage complet par le biais d'un logiciel. La carte comprend également le chargeur LiPo monocellulaire MCP73831 ainsi que la jauge de carburant MAX17048 pour charger et surveiller une batterie connectée. Enfin, un emplacement pour carte µSD est intégré pour tout besoin de mémoire externe.
Le module sans fil MGM240P est construit autour du SoC sans fil EFR32MG24 avec un processeur ARM Cortex-M33 à 32 bits fonctionnant à 39 MHz avec 1536 kb de mémoire Flash et 256 kb de RAM. Le MGM240P fonctionne avec les protocoles sans fil 802.15.4 courants (Matter, ZigBee et OpenThread) ainsi qu'avec Bluetooth Low Energy 5.3. Le MGM240P supporte le Secure Vault de Silicon Labs pour les applications Thread.
Spécifications
Module sans fil MGM240P
Construit autour du SoC sans fil EFR32MG24
Processeur Cœur ARM Cortex-M33 32 bits (@ 39 MHz)
Mémoire flash de 1536 Ko
256 Ko de RAM
Prise en charge de plusieurs protocoles sans fil 802.15.4 (ZigBee et OpenThread)
Bluetooth Low Energy 5.3
Prêt pour Matter
Prise en charge de Secure Vault
Antenne intégrée
Facteur de forme Thing Plus (compatible avec les fibres) :
Dimensions : 5,8 x 2,3 cm (2,30 x 0,9')2 5,8 x 2,3 cm (2,30 x 0,9')
2 trous de fixation :
compatible avec les vis 4-40
21 sorties GPIO
Tous les connecteurs ont une capacité de multiplexage complète par logiciel
Interfaces SPI, I²C et UART mappées par défaut sur les connecteurs étiquetés.
13 GPIO (6 étiquetés comme analogiques, 7 étiquetés comme GPIO)
Toutes les fonctions sont soit GPIO, soit analogiques.
Convertisseur numérique-analogique intégré (DAC)
Connecteur USB-C
Connecteur de batterie LiPo JST à 2 broches pour une batterie LiPo (non incluse)
Connecteur JST Qwiic 4 broches
Chargeur LiPo monocellulaire MC73831
Taux de charge configurable (500 mA par défaut, 100 mA en alternance)
MAX17048 Jauge de carburant LiPo monocellulaire
Emplacement pour carte µSD
Faible consommation d'énergie (15 µA lorsque le MGM240P est en mode faible consommation)
LED:
PWR - LED rouge d'alimentation
CHG - Voyant jaune d'état de charge de la batterie
STAT - Voyant d'état bleu
Bouton de réinitialisation :
Bouton-poussoir physique
Le signal de réinitialisation peut être lié à A0 pour permettre une utilisation en tant que périphérique.
Téléchargements
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Datasheet (MGM240P)
Fritzing Part
Thing+ Comparison Guide
Qwiic Info Page
GitHub Hardware Repo
La LILYGO T-Display-S3 Long est une carte de développement polyvalente alimentée par le microprocesseur LX7 double cœur ESP32-S3R8. Il est doté d'un écran LCD TFT tactile capacitif de 3,4 pouces avec une résolution de 180 x 640 pixels, offrant une interface réactive pour diverses applications.
Cette carte est idéale pour les développeurs recherchant une solution compacte mais puissante pour les projets nécessitant une saisie tactile et une communication sans fil. Sa compatibilité avec les environnements de programmation populaires garantit une expérience de développement fluide.
Spécifications
MCU
Microprocesseur LX7 double cœur ESP32-S3R8
Connectivité sans fil
Wi-Fi 802.11, BLE 5 + BT Mesh
Plateforme de programmation
IDE Arduino, VS Code
Flash
16 Mo
PSRAM
8 Mo
Détection de tension de chauve-souris
IO02
Fonctions intégrées
Bouton de démarrage + réinitialisation, interrupteur de batterie
Afficher
LCD TFT tactile capacitif de 3,4 pouces
Profondeur de couleur
565, 666
Résolution
180 x 640 (RVB)
Alimentation fonctionnelle
3,3 V
Interface
QSPI
Inclus
1x T-Display S3 Long
1x Câble d'alimentation
2x Câbles d'interface STEMMA QT/Qwiic (P352)
1x Broche femelle (double rangée)
Téléchargements
GitHub
The EC200U-EU C4-P01 development board features the EC200U-EU LTE Cat 1 wireless communication module, offering a maximum data rate of up to 10 Mbps for downlink and 5 Mbps for uplink. It supports multi-mode and multi-band communication, making it a cost-effective solution.
The board is designed in a compact and unified form factor, compatible with the Quectel multi-mode LTE Standard EC20-CE. It includes an onboard USB-C port, allowing for easy development with just a USB-C cable.
Additionally, the board is equipped with a 40-pin GPIO header that is compatible with most Raspberry Pi HATs.
Caractéristiques
Equipped with EC200U-EU LTE Cat 1 wireless communication module, multi-mode & multi-band support
Onboard 40-Pin GPIO header, compatible with most Raspberry Pi HATs
5 LEDs for indicating module operating status
Supports TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS protocols, etc.
Supports GNSS positioning (GPS, GLONASS, BDS, Galileo, QZSS)
Onboard Nano SIM card slot and eSIM card slot, dual card single standby
Onboard MIPI connector for connecting MIPI screen and is fully compatible with Raspberry Pi peripherals
Onboard camera connector, supports customized SPI cameras with a maximum of 300,000 pixels
Provides tools such as QPYcom, Thonny IDE plugin, and VSCode plugin, etc. for easy learning and development
Comes with online development resources and manual (example in QuecPython)
Spécifications
Applicable Regions
Europe, Middle East, Africa, Australia, New Zealand, Brazil
LTE-FDD
B1, B3, B5, B7, B8, B20, B28
LTE-TDD
B38, B40, B41
GSM / GPRS / EDGE
GSM: B2, B3, B5, B8
GNSS
GPS, GLONASS, BDS, Galileo, QZSS
Bluetooth
Bluetooth 4.2 (BR/EDR)
Wi-Fi Scan
2.4 GHz 11b (Rx)
CAT 1
LTE-FDD: DL 10 Mbps; UL 5 Mbps
LTE-TDD: DL 8.96 Mbps; UL 3.1 Mbps
GSM / GPRS / EDGE
GSM: DL 85.6 Kbps; UL 85.6 Kbps
USB-C Port
Supports AT commands testing, GNSS positioning, firmware upgrading, etc.
Communication Protocol
TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS
SIM Card
Nano SIM and eSIM, dual card single standby
Indicator
P01: Module Pin 1, default as EC200A-XX PWM0
P05: Module Pin 5, NET_MODE indicator
SCK1: SIM1 detection indicator, lights up when SIM1 card is inserted
SCK2: SIM2 detection indicator, lights up when SIM2 card is inserted
PWR: Power indicator
Buttons
PWK: Power ON/OFF
RST: Reset
BOOT: Forcing into firmware burning mode
USB ON/OFF: USB power consumption detection switch
Antenna Connectors
LTE main antenna + DIV / WiFi (scanning only) / Bluetooth antenna + GNSS antenna
Operating Temperature
−30~+75°C
Storage Temperature
−45~+90°C
Téléchargements
Wiki
Quectel Resources
Si vous cherchez un moyen simple d'apprendre la soudure, ou si vous souhaitez simplement fabriquer un petit gadget que vous pourrez transporter, cet ensemble est une excellente opportunité. Stop me game est un kit éducatif qui vous apprend à souder et, à la fin, vous obtenez votre propre petit jeu. Les LED montent et descendent et votre objectif est d'appuyer sur le bouton dès que la LED verte s'allume. À chaque bonne réponse, le jeu devient un peu plus difficile – le temps dont vous disposez pour appuyer sur le bouton diminue. Combien de bonnes réponses pouvez-vous obtenir ?
Il est basé sur le microcontrôleur ATtiny404, programmé en Arduino. À l'arrière, vous trouverez une pile CR2032 qui rend le kit portable. Il y a aussi un porte-clés. Le processus de soudure est assez simple en fonction de la marque sur le PCB.
Inclus
1x carte de circuit imprimé
1x microcontrôleur ATtiny404
7x LED
1x bouton poussoir
1x interrupteur
7x résistances (330 ohms)
1x support de pile CR2032
1x pile CR2032
1x porte-clés
Le contrôleur de température du thermostat numérique intelligent est un petit contrôleur de commutateur (77 x 51 mm) qui vous permet de créer votre propre thermostat. Avec son capteur NTC et ses afficheurs LED, vous pouvez commuter jusqu'à 10A 220V en fonction de la température mesurée.
LIS3DHTR est un accéléromètre numérique à 3 axes de Grove (LIS3DHTR) à faible coût faisant partie d'un ensemble de produits Grove. Il est basé sur la puce LIS3DHTR qui permet de sélectionner plusieurs gammes et interfaces. Il est étonnant qu'un accéléromètre 3 axes aussi minuscule puisse prendre en charge les interfaces I²C, SPI et ADC GPIO, ce qui signifie que vous pouvez choisir n'importe quel moyen de connexion avec votre carte de développement. En outre, cet accéléromètre peut également surveiller la température ambiante pour réduire l'erreur causée par celle-ci.
Caractéristiques
Plage de mesure : ±2g, ±4g, ±8g, ±16g, sélection de plages multiples.
Multiples interfaces en option : interface I²C Grove, interface SPI, interface ADC.
Température réglable : capable de régler et de corriger l'erreur causée par la température.
Alimentation 3/5V
Spécifications
Alimentation électrique
3/5V
Interfaces
IC/SPI/GPIO ADC
Adresse I²C
Défaut 0x19, peut être changé en 0x18 en connectant la broche SDO avec GND
Broche C/AN : entrée d'alimentation
0 - 3,3V
Interruption
Une interruption Pin réservée
Mode SPI mis en place
Connecter la broche CS avec GND
Inclus
1x Accéléromètre numérique à 3 axes (LIS3DHTR)
1x Câble Grove
Téléchargements
Fiche technique du LIS3DHTR
Schéma
Bibliothèque Arduino
Ce module dispose d'un émetteur d'ultrasons et d'un récepteur d'ultrasons, vous pouvez donc le considérer comme un émetteur-récepteur d'ultrasons. Familier avec le sonar, lorsque l'onde ultrasonique de 40 kHz générée par l'émetteur rencontre l'objet, l'onde sonore sera réémise et le récepteur peut recevoir l'onde ultrasonique réfléchie. Il suffit de calculer le temps entre l'émission et la réception, puis de multiplier la vitesse du son dans l'air (340 m/s) pour calculer la distance du capteur à l'objet.
Caractéristiques
Compatible 3,3 V/5 V, niveau de tension large : 3,2 V ~ 5,2 V.
Seules 3 broches sont nécessaires, économisez les ressources d'E/S
Large plage de mesure : 3 cm ~ 350 cm
Plug and play avec le connecteur Grove
Applications
Mesure de distance
Détecteur à ultrasons
Alarme de proximité
Voiture intelligente
Spécifications techniques
Dimensions
50 mm x 25 mm x 16 mm
Poids
17g
Batterie
Exclure
Plage de mesure
3 cm - 350 cm
Tension de fonctionnement
C.C 3,2 V ~ 5,2 V
Courant de fonctionnement
8mA
Fréquence ultrasonique
40 kHz
Connecteur
1 x bosquet
Sortir
MLI
Ce kit contient tout le nécessaire pour commencer à apprendre à connecter l'électronique au micro:bit de manière accessible et simple. Tout est connecté à l'aide des pinces crocodiles fournies, donc aucune soudure n'est nécessaire. Inclus
MonkMakes Haut-parleur pour micro:bit
MonkMakes Switch pour micro:bit
Carte de capteur MonkMakes pour micro:bit
Jeu de cordons à pince crocodile (10 cordons)
Petit moteur avec ventilateur
Boîtier à pile AA unique (pile non incluse)
Ampoule et support
Livret (A5)
Téléchargements
Instructions
Fiche de données
Plans de cours
Caractéristiques
Tension de fonctionnement : 3,3 V
Microcontrôleur ESP-12E
Taille de l'écran : 1,28 pouces
Port USB pour l'alimentation et le transfert de données
Broches d'interface : 4 GPIO, 1 GND, 1 alimentation
Pilote : GC9A01
Résolution 240 x 240 pixels
Couleur: 65K RVB
Interface : SPI
Téléchargements
Fichier STEP
Dimensions
Fichier 3D
Schématique
GitHub
La ThingPulse Pendrive S3 est un appareil ESP32-S3 avec prise USB-C, LED RVB WS2812B et 128 Mo de flash. Avec l'aide de TinyUSB, l'ESP32-S3 peut se faire passer pour de nombreux périphériques USB, tels que :
Clé USB
Clavier USB
Souris USB
Périphérique audio
Périphérique vidéo
Périphérique réseau
Applications
En tant que périphérique BadUSB avec SuperWiFiDuck, il peut effectuer des injections KeyStroke
En tant que WiFiDisk, il peut être monté par n'importe quel ordinateur standard comme une clé USB et synchroniser les fichiers du disque avec le cloud
En tant que WiFiDongle, il peut ajouter un périphérique réseau WiFi supplémentaire à n'importe quel ordinateur/téléphone
Inclus
PCB ESP32-S3 avec
LED RVB WS2812B
Bouton tactile capacitif (ressort)
Boîtier en plastique pour clé USB
Downloads
CircuitPython
Vous voulez fabriquer un détecteur d'UV pour savoir l'indice UV lorsque vous êtes exposé au soleil ? Le détecteur de soleil Grove est un capteur de lumière numérique multicanal, qui a la capacité de détecter la lumière UV, la lumière visible et la lumière infrarouge.
Ce dispositif est basé sur le SI1151, un nouveau capteur de SiLabs. Le Si1151 est un capteur de proximité infrarouge, d'indice UV et de lumière ambiante à faible puissance, basé sur la réflectance, avec une interface numérique I²C et une sortie d'interruption à événement programmable. Ce dispositif offre d'excellentes performances dans une large plage dynamique et sous diverses sources de lumière, y compris la lumière directe du soleil.
Le capteur de lumière solaire Grove comprend un connecteur Grove embarqué, qui vous permet de le connecter facilement à votre Arduino. Vous pouvez utiliser ce dispositif pour réaliser certains projets de détection de la lumière, notamment un simple détecteur d'UV pour votre station météo avec Raspberry Pi, ou un système d'irrigation intelligent utilisant Arduino si vous avez besoin de surveiller le spectre visible.
Caractéristiques
Capteur de lumière numérique multicanal : peut détecter la lumière UV, la lumière visible et la lumière infrarouge
Grande plage de détection du spectre : 280-950 nm
Facile à utiliser : Interface I²C (7 bits), compatible avec le port Grove, juste plug-and-play
Configuration programmable : Facile à utiliser pour diverses applications
Alimentation 3,3/5 V, adaptée à de nombreux microcontrôleurs et SBC
Applications
Détection de la lumière
Système d'irrigation intelligent
Station météo maison
Inclus
1 x Capteur de lumière solaire Grove
1 x Câble Grove
Téléchargements
Schéma en PDF
Fichier eagle du schéma
Fiche technique du Si1145
Référentiel GitHub pour le capteur de lumière solaire Grove
Spectre
Lumen (unité)
Indice UV
Apprenez les bases de l'électronique en assemblant manuellement votre Arduino Uno, habituez-vous avec la soudure en montant chaque composant, puis libérez votre créativité avec le seul kit qui devient un synthétiseur !
Le kit Arduino Make-Your-Uno est vraiment le meilleur moyen d'apprendre à souder. Et lorsque vous avez terminé, l'emballage vous permet de construire un synthé et de faire votre musique.
Un kit avec tous les composants pour construire votre propre Arduino Uno et un synthétiseur audio.
Le kit Make-Your-Uno est accompagné d'un ensemble complet d'instructions dans une plateforme de contenu dédiée. Celles-ci comprennent des vidéos, une visionneuse interactive en 3D permettant de suivre les instructions détaillées, ainsi que la manière de programmer votre carte une fois qu'elle est terminée..
Ce kit contient :
Circuit imprimé Make-Your-Uno
1x Carte adapteur USB série.
7x Résistances 1k Ohm.
2x Résistances 10k Ohm.
2x Résistances 1M Ohm.
1x Diode (1N4007)
1x Crystal 16 MHz.
4x Leds jaunes.
1x Leds vertes.
1x Bouton-poussoir.
1x MOSFET.
1x Régulateur LDO (3.3 V).
1x Régulateur LDO (5 V).
3x Condensateurs céramiques (22pF).
3x Condensateurs électrolytiques (47uF).
7x Condensateurs polyesters (100nF).
1x Support pour ATMega 328p.
2x Connecteurs I/O.
1x Connecteur 6 broches.
1x Connecteur jack cylindrique.
1x Microcontrôleur ATmega 328p.
Arduino Audio Synth
1x Circuit imprimé Audio Synth.
1x Résistance 100k Ohm.
1x Résistance 10 Ohm.
1x Amplificateur audio (LM386).
1x Condensateur céramique (47nF).
1x Condensateur électrolytique (47uF).
1x Condensateur électrolytique (220uF).
1x Condensateur polyester (100nF).
4x Connecteurs à broches.
6x Potentiomètres 10k Ohm avec boutons en plastique.
Pièces de rechange
2x Condensateurs électrolytiques (47uF).
2x Condensateurs polyesters (100nF).
2x Condensateurs céramiques (22pF).
1x Bouton-poussoir.
1x Led jaune.
1x Led verte.
Pièces mécaniques
5x Entretoises 12 mm.
11x Entretoises 6 mm.
5x Écrous à visser.
2x Vis 12 mm.
Caractéristiques
L'espacement des pas est de 2,54 mm (1 à 36 contacts par rangée) avec une orientation verticale
Nombre de contacts : 40
Nombre de lignes : 2
Genre : réceptacle
Type de terminaison de contact : Trou traversant
Placage de contact : contacts étamés
Plage de températures de fonctionnement élevée de -55°C à 105°C pour les contacts étamés mats
Le matériau de contact est du bronze phosphoreux Matériau isolant en polyester chargé de verre noir
Système de contact Tiger Acheter
Conforme aux normes UL E111594 et CSA 090871_0_000
Le Soldered programmateur CONNECT est conçu pour simplifier considérablement la programmation des cartes basées sur les microcontrôleurs ESP8266 et ESP32. Il intègre toute l'électronique et la logique nécessaires, permettant ainsi de programmer simplement en branchant un câble USB au programmateur CONNECT et en le connectant à l'embase de programmation. Le circuit intégré gère automatiquement la synchronisation et le séquençage des signaux, plaçant le microcontrôleur ESP en mode bootloader sans intervention manuelle.
Caractéristiques
Circuit intégré : CH340
Disposition des broches : GPIO0, RESET, RX, TX, 3V3, GND
LED : RX, TX, alimentation
Interface : USB-C
Dimensions : 38 x 22 mm
Téléchargements
Datasheet
GitHub
Si vous cherchez un moyen simple de commencer à souder ou si vous souhaitez simplement fabriquer votre propre Dasduino, ce kit de soudure est une excellente opportunité. "Make your own Dasduino CORE" est un ensemble pédagogique pour apprendre les compétences de soudure, avec lequel vous obtenez une carte microcontrôleur fonctionnelle. Comme pour les autres versions CMS des cartes Dasduino CORE que nous proposons, les possibilités sont infinies.
Il est basé sur le microcontrôleur ATmega328P et tous les composants SMD sont déjà soudés sur la carte. L'ensemble comprend également une prise THT pour le microcontrôleur, ce qui simplifie le remplacement du microcontrôleur si cela s'avère nécessaire.
Inclus
1x carte de circuit imprimé
7x condensateurs (100nF)
4x condensateurs (2,2 uF)
2x condensateurs (22pF)
5x résistances (2,2 kOhm)
5x résistances (10 kOhm)
3x résistances (1 kohm)
1x résistance (100 kOhm)
1x résistance (100 ohms)
1x connecteur de batterie JST
1x LED (violet)
1x LED (blanche)
1x LED (bleue)
1x LED (rouge)
1x LED (orange)
1x prise pour ATmega328P
1x microcontrôleur ATmega328P
« Le module ZED-F9R est un récepteur GNSS à moteur F9 de 184 canaux, ce qui signifie qu’il peut recevoir des signaux des constellations GPS, GLONASS, Galileo et BeiDou avec une précision d’environ 0,2 mètre! C’est exact; une telle précision peut être obtenue avec une solution de navigation RTK lorsqu’elle est utilisée avec une source de correction. Notez que le ZED-F9R ne peut fonctionner qu’en tant que rover, vous devrez donc vous connecter à une station de base. Le module prend en charge la réception simultanée de quatre systèmes GNSS. La combinaison de mesures GNSS et de capteurs 3D intégrés sur le ZED-F9R fournit des taux de positionnement précis et en temps réel allant jusqu’à 30 Hz. Comparé aux autres modules GPS, ce pHAT optimise la précision de position dans les villes denses ou les zones couvertes. Même dans de mauvaises conditions de signalisation, un positionnement continu est assuré en milieu urbain et est également disponible en cas de perte complète de signal (par ex. tunnels courts et garages de stationnement). Le ZED-F9R est la solution ultime pour les applications robotiques autonomes qui nécessitent un positionnement précis dans des conditions difficiles. Ce récepteur u-blox prend en charge quelques protocoles série. Par défaut, nous avons choisi d’utiliser l’UART série du Raspberry Pi pour communiquer avec le module. Avec des en-têtes pré-moulés, aucune soudure n’est nécessaire pour empiler le pHAT sur un Raspberry Pi, NVIDIA Jetson Nano, Google Coral, ou tout ordinateur à une seule carte avec le facteur de forme 2x20. Nous avons également sorti quelques broches espacées de 0,1' du récepteur u-blox. Un connecteur Qwiic est également ajouté au cas où vous auriez besoin de connecter un périphérique compatible Qwiic. Les produits GPS à base de U-blox sont configurables en utilisant le populaire mais dense, programme de fenêtres appelé u-centre. De nombreuses fonctions différentes peuvent être configurées sur le ZED-F9R : taux de bauds, taux de mise à jour, géolocalisation, détection de spoofing, interruptions externes, SBAS/D-GPS, etc. Le GPS pHAT SparkFun ZED-F9R est également équipé d’une batterie rechargeable intégrée qui alimente le CCF sur le ZED-F9R. Cela réduit le délai jusqu’à la première correction d’un démarrage à froid (~24 s) à un démarrage à chaud (~2 s). La batterie maintiendra les données d’orbite RTC et GNSS sans être connectée à l’alimentation pendant beaucoup de temps. Caractéristiques : 1 connecteur Qwiic Connecteur U.FL intégré pour une utilisation avec une antenne de votre choix Réception simultanée de GPS, GLONASS, Galileo et BeiDou Récepteur GNSS 184 canaux Reçoit les bandes L1C/A et L2C Précision de la position horizontale : 0,20 m avec RTK Vitesse de navigation maximale : jusqu’à 30 Hz Temps pour la première correction Froid : 24 s Chaud : 2 s Limites opérationnelles Max G : 4 G Altitude maximale : 50 km Vitesse maximale : 500 m/s Précision de la vitesse : 0,5 m/s Précision de cap : 0,2 degré Accéléromètre et gyroscope intégrés Précision d’impulsion de temps : 30ns Tension : 5 V ou 3,3 V, mais toute la logique est de 3,3 V Courant : ~85 mA à ~130 mA (varie selon les constellations et l’état de suivi) Logiciel configurable Géoclôture Odomètre Détection de mystification Interruption externe Contrôle de la goupille Mode de faible puissance Prend en charge les protocoles NMEA, UBX et RTCM sur UART'
Caractéristiques
Prise en charge les protocoles NMEA et U-Blox 6.
Faible consommation d'énergie
Taux de bauds configurables
Interface Grove UART
Spécifications
...AntennesAntenne incluse.
Dimensions
40 mm x 20 mm x 13 mm
Taux de mise à jour
1 Hz, max 10 Hz
Taux de bauds
9.600 - 115.200
Tension d'entrée
3,3 V / 5 V
Sensibilité de navigation
-160 dBm
Préférences d'alimentation
3.3/5 V
Nombre de canaux
22 suivis, 66 canaux
Durée du premier démarrage
Démarrage à froid : 13 sDémarrage à chaud : 1-2 sDémarrage à chaud : < ; 1 s
Précision
Précision de la position horizontale du GPS à 2,5 m
Toujours à l'écoute
Avec ce kit, vous pouvez facilement construire un appareil d'écoute puissant, parfait pour les voix d'animaux et les bruits faibles.
Le manuel vous guide clairement tout au long du montage. Aucune expérience préalable n’est requise. Idéal pour tous les enquêteurs amateurs et bricoleurs intéressés par la technologie.
Requis en plus :
1 pile 9V
Casque avec prise téléphonique 3,5 mm
Vous trouverez ici toutes sortes de pièces, composants et accessoires dont vous avez besoin dans différents projets, depuis les simples fils, capteurs et écrans jusqu'aux modules et kits déjà pré-assemblés.