Le 741SE est un kit de soudure pour montage en surface facile à construire. Il comprend le circuit imprimé, les résistances et les transistors qui composent le circuit électrique ainsi que les instructions de montage imprimées. Le kit est également livré avec le support « IC Leg » et 8 bornes à vis à code couleur.
Pour construire le 741SE, des compétences et des outils de base en soudure électronique sont requis, mais aucune connaissance supplémentaire en électronique n'est présumée ou requise. Vous fournissez des outils de soudage standards en surface : un fer à souder, de la soudure (fil ou pâte), une petite pince métallique, ainsi qu'un tournevis cruciforme.
Le kit comprend des composants à montage en surface relativement volumineux (1206 et SOT-23) et constitue un excellent premier kit de soudure à montage en surface si vous débutez tout juste. Cependant, si vous êtes expérimenté dans le soudage en surface et disposez d'outils comme une station de reprise à air chaud ou d'autres équipements, vous pouvez les utiliser pour assembler ce kit.
Caractéristiques
Support en aluminium anodisé
8x 4-40 inserts filetés à montage en surface Vis à oreilles en acier inoxydable avec capuchons en plastique à code couleur (1 rouge, 1 noir, 6 gris)
Tous les matériaux (y compris le circuit imprimé et le support) sont conformes à RoHS (sans plomb)
Dimensions : 6,5 cm × 5,2 cm x 1,6 mm
Dimensions assemblé : 6,5 cm × 7,8 cm × 2,0 cm
ESP32-S2-Saola-1M est une carte de développement basée sur ESP32-S2 de petite taille. La plupart des broches d'E/S sont réparties sur les embases de broches des deux côtés pour une interface facile. Les développeurs peuvent soit connecter des périphériques avec des câbles de démarrage, soit monter l'ESP32-S2-Saola-1M sur une planche à pain.
L'ESP32-S2-Saola-1M est équipé du module ESP32-S2-WROOM, un module MCU Wi-Fi puissant et générique doté d'un riche ensemble de périphériques. C'est un choix idéal pour une grande variété de scénarios d'application liés à l'Internet des objets (IoT), à l'électronique portable et à la maison intelligente. La carte est dotée d'une antenne PCB et dispose d'un flash SPI externe de 4 Mo.
Caractéristiques
MCU
ESP32-S2 intégré, microprocesseur Xtensa® monocœur LX7 32 bits, jusqu'à 240 MHz
ROM de 128 Ko
320 Ko de mémoire SRAM
16 Ko de SRAM en RTC
Wifi
802.11b/g/n
Débit binaire : 802.11n jusqu'à 150 Mbps
Agrégation A-MPDU et A-MSDU
Prise en charge de l'intervalle de garde de 0,4 µs
Plage de fréquence centrale du canal opérationnel : 2 412 ~ 2 484 MHz
Matériel
Interfaces : GPIO, SPI, LCD, UART, I²C, I²S, interface caméra, IR, compteur d'impulsions, LED PWM, TWAI (compatible ISO 11898-1), USB OTG 1.1, ADC, DAC, capteur tactile, capteur de température
Oscillateur à cristal de 40 MHz
Flash SPI de 4 Mo
Tension de fonctionnement/Alimentation : 3,0 ~ 3,6 V
Plage de température de fonctionnement : –40 ~ 85 °C
Dimensions : 18 × 31 × 3,3 mm
Applications
Hub de capteurs IoT générique à faible consommation
Enregistreurs de données IoT génériques à faible consommation
Caméras pour le streaming vidéo
Appareils par contournement (OTT)
Périphériques USB
Reconnaissance de la parole
Reconnaissance d'images
Réseau maillé
Automatisation de la maison
Panneau de contrôle de maison intelligente
Bâtiment intelligent
L'automatisation industrielle
Agriculture intelligente
Applications audio
Applications de soins de santé
Jouets compatibles Wi-Fi
Électronique portable
Applications de vente au détail et de restauration
Machines de point de vente intelligentes
Le T-Journal est une carte de développement de caméra ESP32 peu coûteuse qui comprend une caméra OV2640, une antenne, un écran OLED de 0,91 pouce, des GPIO exposés et une interface micro-USB. Cela facilite et accélère le téléchargement de code sur le tableau.
Caractéristiques
Chipset Expressif-ESP32-PCIO-D4 Microprocesseur Xtensa simple/double cœur 32 bits LX6 240 MHz
FLASH QSPI flash/SRAM, jusqu'à 4x 16 Mo
SRAM 520 Ko de SRAM
Réinitialisation de la clé, IO32
Écran 0,91' SSD1306
Voyant d'alimentation rouge
USB vers TTL CP2104
Appareil photo OV2640, 2 mégapixels
Moteur de direction servo analogique
Horloge embarquée, oscillateur à cristal de 40 MHz
Tension de fonctionnement 2,3-3,6 V
Courant de fonctionnement environ 160 mA
Plage de température de fonctionnement -40 ℃ ~ +85 ℃
Dimensions 64,57 x 23,98 mm
Alimentation USB 5 V/1 A
Courant de charge 1 A
Batterie Batterie au lithium 3,7 V
Wifi
Norme FCC/CE/TELEC/KCC/SRRC/NCC (puce ESP32)
Protocole 802.11 b/g/n/e/i (802.11n, vitesse jusqu'à 150 Mbps) Polymérisation A-MPDU et A-MSDU, prise en charge de 0,4 μS Intervalle de protection
Gamme de fréquences 2,4 GHz ~ 2,5 GHz (2 400 M ~ 2 483,5 M)
Puissance d'émission 22 dBm
Distance de communication 300m
Bluetooth
Le protocole est conforme aux normes Bluetooth v4.2BR/EDR et BLE
Fréquence radio avec une sensibilité de -98 dBm Récepteur NZIF Émetteur AFH de classe 1, classe 2 et classe 3
Fréquence audio Fréquence audio CVSD et SBC
Logiciel
Mode Wi-Fi Station/SoftAP/SoftAP+Station/P2P
Mécanisme de sécurité WPA/WPA2/WPA2-Enterprise/WPS
Type de cryptage AES/RSA/ECC/SHA
Mise à niveau du micrologiciel Téléchargement UART/OTA (via réseau/hôte pour télécharger et écrire le micrologiciel)
Développement de logiciels Prise en charge du développement de serveurs cloud/SDK pour le développement du micrologiciel utilisateur
Protocole réseau IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT
Configuration utilisateur jeu d'instructions AT+, serveur cloud, application Android/iOS
OS FreeRTOS
Inclus
1x module caméra ESP32 (objectif normal)
1x antenne Wi-Fi
1x câble d'alimentation
Téléchargements
Bibliothèque de caméras pour Arduino
Build your 3D led cube and create unlimited 3D effects. The unit comes standard loaded with effects. Connect to your computer (USB) and create your own!
Caractéristiques
LEDs: 5 x 5 x 5 = 125 LEDs
User programmable via USB (creation of animation/scenes)
Large amount of user programmable frames
Frames are separately dimmable
4 transition speeds
Available frames: 3200
5 levels LED dimming available
No coding skills required
Software similar to (3 x 3 x 3)
Spécifications
Regulated power supply: 9 VDC (not incl.)
Power consumption: 300 mA max.
Dimensions: 110 x 110 x 150 mm
L'OKdo E1 est une carte de développement à très faible coût basée sur le microcontrôleur Arm Cortex-M33 double cœur NXP LPC55S69JBD100. La carte E1 est parfaite pour l'IoT industriel, le contrôle et l'automatisation des bâtiments, l'électronique grand public et les applications générales intégrées et sécurisées.
Caractéristiques
Processeur avec Arm TrustZone, unité à virgule flottante (FPU) et unité de protection de la mémoire (MPU)
Coprocesseur CASPER Crypto pour permettre l'accélération matérielle de certains algorithmes cryptographiques asymétriques
Accélérateur matériel PowerQuad pour les fonctions DSP à virgule fixe et flottante
Fonction physique non clonable (PUF) SRAM pour la génération, le stockage et la reconstruction de clés
Module PRINCE pour le cryptage et le décryptage en temps réel des données flash
Moteurs AES-256 et SHA2
Jusqu'à neuf interfaces Flexcomm. Chaque interface Flexcomm peut être sélectionnée par logiciel pour être une interface USART, SPI, I²C et I²S
Contrôleur hôte/périphérique USB 2.0 haute vitesse avec PHY sur puce
Contrôleur hôte/périphérique USB 2.0 pleine vitesse avec PHY sur puce
Jusqu'à 64 GPIO Interface de carte d'entrée/sortie numérique sécurisée (SD/MMC et SDIO)
Caractéristiques
Microcontrôleur flash LPC55S69JBD100 640 Ko
Débogueur CMSIS-DAP v1.0.7 intégré basé sur LPC11U35
La PLL interne prend en charge un fonctionnement jusqu'à 100 MHz, 16 MHz peuvent être montés pour un fonctionnement complet à 150 MHz.
SRAM 320 Ko
Cristal 32 kHz pour horloge en temps réel
4 commutateurs utilisateur
LED 3 couleurs
Connecteur USB utilisateur
Connecteurs d'extension 2 voies 16 voies
UART sur port COM virtuel USB
Si vous cherchez un moyen simple d'apprendre la soudure, ou si vous souhaitez simplement fabriquer un petit gadget que vous pourrez transporter, cet ensemble est une excellente opportunité. Le jeu de réaction est un kit éducatif qui vous apprend à souder et, à la fin, vous obtenez votre propre petit jeu. Le but du jeu est d'appuyer sur le bouton à côté de la LED dès qu'elle s'allume. À chaque bonne réponse, le jeu devient un peu plus difficile – le temps dont vous disposez pour appuyer sur le bouton diminue. Combien de bonnes réponses pouvez-vous obtenir ?
Il est basé sur le microcontrôleur ATtiny404, programmé en Arduino. À l'arrière, vous trouverez une pile CR2032 qui rend le kit portable. Il y a aussi un porte-clés. Le processus de soudure est assez simple en fonction de la marque sur le PCB.
Inclus
1x carte de circuit imprimé
1x microcontrôleur ATtiny404
4x LED
4x boutons poussoirs
1x interrupteur
4x résistances (330 ohms)
1x support de pile CR2032
1x pile CR2032
1x porte-clés
Ce FeatherWing facilite l'ajout d'un enregistrement de données à n'importe quelle carte Feather que vous possédez. Vous obtenez à la fois une horloge en temps réel I²C (PCF8523) avec cristal de 32 KHz et batterie de secours, ainsi qu'une prise microSD qui se connecte aux broches du port SPI (+ broche supplémentaire pour CS).
Remarque : FeatherWing n'est pas livré avec une carte microSD.
Une pile bouton CR1220 est requise pour utiliser les capacités de secours de la batterie RTC. Si vous n'utilisez pas la partie RTC du FeatherWing, aucune batterie n'est requise.
Pour communiquer avec le support de la carte microSD , la bibliothèque SD standard de Worduino est recommandée. Un peu de soudure est nécessaire pour fixer les en-têtes à l'aile.
Brochages
Broches d'alimentation
Sur la rangée du bas, les broches 3,3 V (deuxième à gauche) et GND (quatrième à gauche) sont utilisées pour alimenter la carte SD et le RTC (pour soulager la pile bouton lorsque l'alimentation secteur est disponible)
Broches RTC et I²C
Dans le coin supérieur droit, SDA (à l'extrême droite) et SCL (à gauche de SDA) sont utilisés pour communiquer avec la puce RTC.
SCL - Broche d'horloge I²C à connecter à la ligne d'horloge I 2 C de votre microcontrôleur. Cette broche a une résistance pull-up de 10 kΩ à 3,3 V
SDA - Broche de données I²C à connecter à la ligne de données I 2 C de votre microcontrôleur. Cette broche a une résistance pull-up de 10 kΩ à 3,3 V
Il existe également une dérivation pour INT , la broche de sortie du RTC. Il peut être utilisé comme sortie d'interruption ou pour générer une onde carrée. Notez que cette broche est un drain ouvert - vous devez activer le pull-up interne sur la broche numérique à laquelle elle est connectée.
Broches SD et SPI
en partant de la gauche vous avez
SPI Clock (SCK) - sortie du ressort à l'aile
SPI Master Out Slave In (MOSI) - sortie du ressort à l'aile
SPI Master In Slave Out (MISO) - entrée aile vers ressort
Ces épingles sont au même endroit sur chaque plume. Ils servent à la communication avec la carte SD. Lorsque la carte SD n'est pas insérée, ces broches sont totalement libres. MISO devient tri-état lorsque la broche SD CS (sélection de puce) est tirée vers le haut
Le VL53L1X de STMicroelectronics utilise un VCSEL (Vertical Cavity Surface Emitting Laser - Diode laser à cavité verticale émettant par la surface) pour émettre un laser infrarouge afin de chronométrer la réflexion vers la cible. Cela signifie que vous pourrez mesurer la distance à un objet de 40 mm à 4 m de distance avec une résolution millimétrique ! Pour faciliter encore plus la lecture de vos mesures, toute la communication se fait exclusivement via I2C, en utilisant notre système Qwiic pratique, donc aucune soudure n'est nécessaire pour le connecter au reste de votre système. Cependant, nous avons toujours des broches espacées de 0,1" au cas où vous préféreriez utiliser une platine d'expérimentation.
Chaque capteur VL53L1X a une résolution de 1mm avec une précision de +/-5mm, et la distance de lecture minimale de ce capteur est de 4cm. Le champ de vision de ce petit circuit imprimé est assez étroit à 15°-27° avec une fréquence de lecture allant jusqu'à 50Hz. Assurez-vous d'alimenter cette carte de façon appropriée, car elle aura besoin de 2,6V-3,5V pour fonctionner. Enfin, veillez à retirer l'autocollant de protection sur le VL53L1X avant de l'utiliser, sinon vous risquez de perdre vos lectures.
Caractéristiques
Tension de fonctionnemet : 2,6 V - 3,5 V
Consommation électrique : 20 mW @10 Hz
Gamme de mesures : ~40 mm à 4 000 mm
Résolution : +/-1 mm
Source de lumière : VCSEL de classe 1 940 nm
Adresse I2C non décalée sur 7 bits : 0x29
Champ de vision : 15° - 27°
Cette carte support combine un écran TFT 2.4', six DEL adressables, un régulateur de tension intégré, un connecteur IO à 6 broches et une fente microSD avec la fente de connecteur M.2 broches afin qu’elle puisse être utilisée avec les cartes de processeur compatibles dans notre écosystème MicroMod. Nous avons également installé sur cette carte porteuse l’ATtiny84 d’Atmel avec 8Ko de flash programmable. Ce petit gars est préprogrammé pour communiquer avec le processeur sur I2C pour lire les boutons pressés. Caractéristiques : Connecteur MicroMod M.2 240 x 320 pixels, écran TFT 2,4' 6 DEL APA102 adressables Buzzer magnétique Connecteur USB-C Régulateur de tension 3,3 V 1 A Connecteur Qwiic Boutons de démarrage/réinitialisation Circuit de batterie et de charge de secours du CCF microSD Phillips #0 M2.5 x 3 mm vis incluse
Le module NEO-M8U est un récepteur GNSS à moteur M8 72 canaux, ce qui signifie qu’il peut recevoir des signaux des constellations GPS, GLONASS, Galileo et BeiDou avec une précision d’environ 2,5 mètres. Le module prend en charge la réception simultanée de trois systèmes GNSS. La combinaison de mesures GNSS et de capteurs 3D intégrés sur le NEO-m8u fournit des taux de positionnement précis et en temps réel allant jusqu’à 30 Hz. Par rapport aux autres modules GPS, ce circuit imprimé maximise la précision de position dans les villes denses ou les zones couvertes. Même dans de mauvaises conditions de signalisation, un positionnement continu est assuré en milieu urbain et est également disponible en cas de perte complète de signal (par ex. tunnels courts et garages de stationnement). Avec UDR, la position commence dès que la carte est sous tension, avant même que le premier correctif GNSS soit disponible ! Le temps de verrouillage est encore réduit avec une batterie rechargeable embarquée ; vous disposerez d’une alimentation de secours permettant au GPS d’obtenir un verrouillage à chaud en quelques secondes ! De plus, ce récepteur u-blox prend en charge I²C (u-blox appelle ce canal de données d’affichage le Display Data Channel), ce qui le rend parfait pour la compatibilité Qwiic, afin que nous n’ayons pas à utiliser nos précieux ports UART. En utilisant notre système pratique Qwiic, aucune soudure n’est nécessaire pour le connecter au reste de votre système. Cependant, nous avons encore des broches espacées de 0,1' si vous préférez utiliser une platine d'expérimentation. Les produits GPS à base de U-blox sont configurables en utilisant le cèlèbre mais dense, programme de Windows appelé u-centre. De nombreuses fonctions différentes peuvent être configurées sur le NEO-m8u : taux de bauds, taux de mise à jour, géolocalisation, détection de spoofing, interruptions externes, SBAS/D-GPS, etc. Tout cela peut être fait dans la bibliothèque Arduino SparkFun ! Le SparkFun NEO-m8u GPS Breakout est également équipé d’une batterie rechargeable embarquée qui alimente le RTC sur le NEO-m8u. Cela réduit le délai jusqu’à la première correction d’un démarrage à froid (~26 s) à un démarrage à chaud (~1,5 s). La batterie maintiendra les données d’orbite RTC et GNSS sans être connectée à l’alimentation pendant beaucoup de temps. Caractéristiques : Connecteur U.FL intégré pour une utilisation avec une antenne de votre choix Récepteur GNSS 72 canaux Précision horizontale de 2,5 m Fréquence de mise à jour maximale de 30 Hz Délai avant la première correction : Froid : 26 s Chaud : 1,5 s Altitude maximale : 50 000 m Max G : 4 Vitesse maximale : 500 m/s Précision de la vitesse : 0,5 m/s Précision du cap : 1 degré Accéléromètre et gyroscope intégrés Précision de l’impulsion de temps : 30 ns 3,3 V VCC et E/S Consommation de courant : ~29 mA Suivi continu, mode simultané par défaut Logiciel configurable : Géoclôture Odomètre Détection de spoofing Interruption externe Contrôle des broches Mode basse consommation Et bien plus encore! Prend en charge les protocoles NMEA, UBX et RTCM sur les interfaces UART ou I²C
Cet écran tactile de 7' convainc par ses nombreuses possibilités d'application. L'écran peut être connecté via HDMI ainsi que via VGA. Il dispose d'un connecteur audio 3,5 mm et d'un connecteur JST 4 broches, sur lequel peuvent être connectés un casque ou deux haut-parleurs 2 W / 5 Ω. Le logiciel intégré permet de configurer les paramètres tels que le contraste et la luminosité à l'aide des boutons sur le côté. Caractéristiques
Type d'écran LCD
IPS
Résolution
1024x600
Contraste
800:1
Luminosité
350 CD/m²
Multi-touches
Capacitif, 5 Points
Connexions
Connexions HDMI, VGA, Audio 3,5 mm, connecteur JST pour deux haut-parleurs 2 W / 5 Ω
Source de courant
5V/2A
Angle de vue
175°
Couleurs
16,7 millions
Autres particularités
Des pastilles de soudure supplémentaires pour amener les boutons au
Dimensions
165x124x13mm
Inclus
1x écran 7'
1x câble micro-USB
1x câble VGA
1x câble HDMI
1x câble HDMI-microHDMI
Téléchargements
Fiche de données
Manuel
La jauge d'angle de projection de ligne laser ATuMan LI1 est un outil polyvalent conçu pour des mesures d'angle précises. Il combine les fonctionnalités d'un inclinomètre, d'un rapporteur et d'un niveau laser, ce qui le rend adapté à diverses applications dans les projets de construction, de décoration et de bricolage.
Caractéristiques
Mesure d'angle en temps réel
Écran couleur HD LED double face
Corps en aluminium givré
Charge rapide USB-C
Niveau d'angle
Projection de ligne laser
Support réglable pour une fixation facile
IP54 étanche à l'eau et à la poussière
Spécifications
Distance intérieure
≤10 m
Précision des mesures
±0,5°
Modes de mesure
Angle absolu et angle relatif
Longueur d'onde laser
660 nm
Classe Laser
Classe II
Niveau de protection
IP54 (résistant à la poussière et aux éclaboussures)
Batterie
Batterie au lithium 730 mAh (intégrée)
Interface de chargement
USB-C
Température de fonctionnement
−10~50°C
Dimensions
120 x 20 x 35 mm (projecteur)103 x 95 mm (support)
Poids
95 g
Inclus
1x LI1 Mètre d'angle de projection laser (double laser)
1x Support
Cette version du Micro OLED Breakout est exactement la même taille du non-Qwiic, avec un écran de 64 pixels de large et 48 pixels de haut et mesurant 0,66' de diamètre. Mais il a également été équipé de deux connecteurs Qwiic, ce qui le rend idéal pour les opérations I2C. Nous avons également ajouté deux trous de montage et un support de câble Qwiic pratique intégré dans une languette amovible sur la carte qui peut être facilement retiré grâce à un bord en V. Nous avons même veillé à inclure un pull-up I2C et un jumper ADDR à l’arrière de la carte, donc si vous avez vos propres pull-ups I2C ou si vous avez besoin de changer l’adresse I2C de la carte! Caractéristiques Connecteur Qwiic activé Tension de fonctionnement : 3,3 V Courant de fonctionnement : 10 mA (20 mA max) Taille de l’écran : 64x48 pixels (0,66' de diamètre) Monochrome bleu sur noir Interface I2C »
Le FNIRSI NVS-20 est un appareil de vision nocturne monoculaire polyvalent, idéal pour une observation claire dans l'obscurité totale ou dans des conditions de faible luminosité. Il offre une portée illimitée dans une lumière faible et jusqu'à 300 m dans l'obscurité totale.
Doté d'un port USB et d'un emplacement pour carte TF, il prend en charge les mises à jour du micrologiciel et le stockage multimédia. Doté d'un écran couleur, il fonctionne parfaitement de jour comme de nuit, permettant la capture de photos, l'enregistrement vidéo, la lecture et un zoom électronique jusqu'à 6x. Le NVS-20 est l'outil ultime pour améliorer les capacités de vision nocturne.
Spécifications
Zoom électronique
6x
Diamètre de l'objectif
25 mm
Faible luminosité ou distance d'observation de jour
2 m~∞
Distance d'observation entièrement noire
300 m (maximum)
Résolution vidéo
4K (3840x2160) / 2K (2560x1440) / 1080 FHD (1920x1080) / 720P (1280x720) / VGA (640x480) / QVGA (320x240)
Résolution des photos
36MP / 32MP / 30MP / 24MP / 20MP / 16MP / 12MP / 10MP / 8MP / 5MP / 3MP / VGA
Longueur d'onde IR
850 nm
Niveau de résistance à l'eau
IPX6
Balance des blancs
Automatique, Lumière du jour, Nuageux, Filament de tungstène, Fluorescent
ISO
Auto, 100, 200, 400, 800
Réglage de la luminosité de l'écran LCD
Niveaux élevé, moyen et faible
Fréquence de la source lumineuse
50 Hz/60 Hz
Stockage
Carte mémoire TF de 32 Go
Tension
3,7 V
Alimentation
Batterie interne 18650
Charge
USB-C (5 V/1 A)
Écran
Écran HD IPS de 1,54 pouces
Température
−5~40°C
Humidité
0-80%
Langues
Chinois / Traditionnel / Anglais / Japonais / Italien / Français / Allemand / Russe / Espagnol / Portugais
Dimensions
152 x 42 x 82 mm
Poids
240 g
Inclus
1x NVS-20 monoculaire à vision nocturne
1x Batterie au lithium 18650
1x Carte mémoire TF (32 Go)
1x Câble USB
1x Manuel
Téléchargements
Manual
Firmware FW96675
La partie sans fil LSN50 est basée sur SX1276/SX1278 et permet à l'utilisateur d'envoyer des données et d'atteindre des portées extrêmement longues à de faibles débits de données. Il offre une communication à spectre étalé ultra longue portée et une immunité élevée aux interférences tout en minimisant la consommation de courant. Il cible les applications professionnelles de réseau de capteurs sans fil telles que les systèmes d’irrigation, les compteurs intelligents, les villes intelligentes, la détection de smartphones, l’automatisation des bâtiments, etc.
La partie MCU LSN50 utilise la puce STM32l0x de ST, STML0x est le microcontrôleur STM32L072xx à très faible consommation qui intègre la puissance de connectivité du bus série universel (USB 2.0 sans cristal) avec le ARM® Cortex®-M0+ 32 bits hautes performances. Noyau RISC fonctionnant à une fréquence de 32 MHz, une unité de protection de mémoire (MPU), des mémoires intégrées à haute vitesse (192 Ko de mémoire programme Flash, 6 Ko de données EEPROM et 20 Ko de RAM) ainsi qu'une vaste gamme d'E/S améliorées. et périphériques. Le LSN50 est un produit open source, il est basé sur les drivers STM32Cube HAL et de nombreuses librairies sont disponibles sur le site STM pour un développement rapide.
Caractéristiques
Microcontrôleur STM32L072CZT6
Modem sans fil LoRa SX1276/78
Précharger avec le chargeur de démarrage du FAI
I2C,LPUSART1,USB
18 x E/S numériques
2 CAN 12 bits ; 1 DAC 12 bits
Le MCU se réveille par UART ou interruption
Modem LoRa™
Détection du préambule
Débit en bauds configurable
Spécification LoRaWAN 1.0.2
Base logicielle sur les pilotes STM32Cube HAL
Matériel/logiciel open source
Boîtier étanche IP66
Consommation d'énergie ultra-faible
Commandes AT pour configurer les paramètres
Batterie 4000 mAh pour une utilisation à long terme
Applications
Systèmes d'alarme et de sécurité sans fil
Domotique et domotique
Relevé automatisé des compteurs
Surveillance et contrôle industriels
Systèmes d'irrigation à longue portée
Spécification LoRa
Budget de liaison maximum de 168 dB.
+20 dBm - 100 mW de sortie RF constante par rapport à
Sonorisation haute efficacité +14 dBm.
Débit binaire programmable jusqu'à 300 kbps.
Haute sensibilité : jusqu'à -148 dBm.
Frontal pare-balles : IIP3 = -12,5 dBm.
Excellente immunité de blocage.
Faible courant RX de 10,3 mA, rétention de registre de 200 nA.
Synthétiseur entièrement intégré avec une résolution de 61 Hz.
Modulation FSK, GFSK, MSK, GMSK, LoRaTM et OOK.
Synchroniseur de bits intégré pour la récupération de l'horloge.
Détection du préambule.
Plage dynamique RSSI de 127 dB.
Détection RF et CAO automatiques avec AFC ultra-rapide.
Moteur de paquets jusqu'à 256 octets avec CRC.
Capteur de température intégré et indicateur de batterie faible.
Spécification du MCU
Microcontrôleur : STM32L072CZT6
Flash : 192 Ko
SRAM : 20 Ko
EEPROM : 6 Ko
Vitesse d'horloge: 32 MHz
Notes maximales absolues
VCC : 0,5 V ~ 3,9 V
Température de fonctionnement : -40 °C ~ 85 °C
Broches d'E/S : 0,5 V ~ VCC+0,5 V
Caractéristiques communes du courant continu
Tension d'alimentation : 1,8 V ~ 3,6 V
Température de fonctionnement : -40 °C ~ 85 °C
Broches E/S : Fiche technique STM32L072CZT6
Consommation d'énergie
Mode ARRÊT : 2,7 μA à 3,3 V
Mode réception : 7,2 mA
Mode TX : 125 mA à 20 dBm
Batterie
Batterie rechargeable Li/SOCI2
Capacité : 4000mAh
Autodécharge : < 1 % / an à 25 °C
Courant continu maximum : 130 mA
Courant boost maximum : 2 A, 1 seconde
Caractéristiques
Quatre éléments de capteur entièrement indépendants sur un seul emballage.
La capacité de détecter une variété de gaz, outre le monoxyde de carbone (CO), le dioxyde d'azote (NO2), l'alcool éthylique (C2H5CH), les composés organiques volatils (COV), etc.
Détection qualitative plutôt que quantitative.
Taille compacte pour un déploiement facile.
Inclus
1 x carte de capteur de gaz multicanal
1 x câble Grove
Le Sparkfun Qwiic GPIO est un appareil I²C basé sur le TCA9534 I/O Expander IC de Texas Instruments. La carte ajoute huit broches IO que vous pouvez lire et écrire comme n’importe quelle autre broche numérique sur votre contrôleur. Les détails de l’interface I²C ont été pris en compte dans une bibliothèque Arduino afin que vous puissiez appeler des fonctions similaires à pinMode et digitalWrite d’Arduino, vous permettant de vous concentrer sur votre création ! Les broches du TCA9534 sont des bornes de verrouillage faciles à utiliser; ne jamais visser un autre fil à cette place! Les bornes sont relativement spacieuses elles-mêmes, alors n’hésitez pas à fixer plusieurs fils dans une borne de terre ou d’alimentation. Avec trois cavaliers d’adresse personnalisables, vous pouvez avoir jusqu’à huit cartes GPIO Qwiic connectées sur un seul bus permettant jusqu’à 64 broches GPIO supplémentaires ! L’I²C par défaut est 0x27 et peut être modifié en ajustant les cavaliers sur le dos de la carte. Caractéristiques : Huit broches GPIO configurables disponibles Adresse I2C : 0x27 (par défaut) Les broches d’adresse permettent d’utiliser jusqu’à huit cartes sur un seul bus Registre d’inversion de polarité d’entrée Contrôler chaque broche d’E/S individuellement ou en même temps Sortie Open-Drain Active-Low Interrupt Output 2 x connecteurs Qwiic Dimensions : 60,96 mm x 38,10 mm
Le Qwiic Mux dispose également de huit adresses configurables, permettant jusqu’à 64 bus I2C sur une connexion. Pour faciliter encore plus l’utilisation de ce multiplexeur, toute la communication est transmise exclusivement via I2C, en utilisant notre système Qwiic pratique. Le Mux Qwiic vous permet également de changer les trois derniers bits de l’octet d’adresse, ce qui permet de sélectionner huit adresses de cavalier si vous avez besoin de mettre plus d’une Breakout Mux Qwiic sur le même port I2C. L’adresse peut être modifiée en ajoutant une soudure à l’un des trois cavaliers ADR. Chaque Breakout SparkFun Qwiic Mux fonctionne entre 1,65 V et 5,5 V, ce qui en fait l’idéal pour toutes les planches Qwiic que nous produisons en interne.
Le LILYGO T-Panel S3 est une carte de développement polyvalente conçue pour les applications IoT, dotée d'un écran LCD IPS de 4 pouces avec une résolution de 480 x 480.
Alimenté par le microcontrôleur ESP32-S3, il offre une connectivité Wi-Fi 2,4 GHz et Bluetooth 5 (LE), avec 16 Mo de mémoire flash et 8 Mo de PSRAM. La carte prend en charge les environnements de développement tels que Arduino, PlatformIO-IDE et MicroPython. Il comprend notamment une interface tactile capacitive, améliorant les capacités d'interaction de l'utilisateur. Les fonctions intégrées comprennent le démarrage (IO00), la réinitialisation et deux touches supplémentaires, offrant une flexibilité pour diverses applications. Cette combinaison de fonctionnalités rend le T-Panel S3 adapté à un large éventail de projets IoT et d'interfaces de contrôle d'appareils intelligents.
Spécifications
MCU1
ESP32-S3
Flash
16 Mo
PSRAM
8 Mo
Connectivité sans fil
Wi-Fi 2,4 GHz + Bluetooth 5 (LE)
MCU2
ESP32-H2
Flash
4 Mo
Connectivité sans fil
IEEE 802.15.4 + Bluetooth 5 (LE)
Développement
Arduino, PlatformIO-IDE, Micropython
Écran
LCD IPS ST7701S 4,0 pouces (480 x 480)
Résolution
480 x 480 (RVB)
Interface
SPI + RVB
Bibliothèque de compatibilité
Arduino_GFX, LVGL
Fonctions intégrées
QWiiCx2 + Carte TF + AntenneBouton ESP32 4x = S3 (Boot + RST) + H2 (Boot + RST)
Module émetteur-récepteur
RS485
Utilisation du protocole de communication par bus
UART
Inclus
1x T-Panel S3
1x Broche femelle (2x 8x1,27)
Téléchargements
GitHub
L'écran tactile CrowVision de 11,6 pouces est conçu pour les machines tout-en-un. Il dispose d'un écran haute résolution de 1366 x 768 et d'une dalle IPS, offrant une expérience visuelle supérieure. La structure métallique fixée à l'arrière de style industriel est compatible avec divers ordinateurs monocarte (SBC), avec une disposition raisonnable et un câblage soigné, ce qui la rend facile à mettre sous tension et à utiliser avec des opérations simples.
L'écran utilise une communication compatible HDMI et prend en charge le multi-touch capacitif. Il dispose d'interfaces et de boutons réservés pour les haut-parleurs et autres accessoires, ce qui le rend adaptable à différents scénarios d'utilisation. Il peut être utilisé avec une variété d'ordinateurs monocarte couramment disponibles tels que Raspberry Pi, Jetson Nano, et est plug-and-play, tout en étant entièrement compatible avec les systèmes d'exploitation des ordinateurs monocarte (tels que Raspbian, Ubuntu). , Windows, Android, Mac OS et Chrome OS, etc.).
Cet écran peut être largement utilisé dans les affichages du système de contrôle des applications d'automatisation, les projets de bricolage personnels, les écrans secondaires/secondes fenêtres, les équipements d'affichage audio-vidéo d'ordinateur monocarte, les appareils de communication HDMI, les écrans d'extension de console de jeu et d'autres scénarios.
Caractéristiques
Écran haute résolution de 11,6 pouces avec une résolution de 1 366 x 768, un panneau IPS et un grand angle de vision de 178° pour une meilleure expérience visuelle
Structure de fixation arrière unique avec piliers de fixation coulissants, compatible avec la plupart des modèles d'ordinateurs monocarte, facile à assembler
Large compatibilité, compatible avec plusieurs systèmes d'exploitation (Raspbian, Ubuntu, Windows, Android, Mac OS et Chrome OS)
Prend en charge l'audio, la vidéo et le toucher capacitif, plug and play
Intègre une variété d'interfaces périphériques (telles que des haut-parleurs, des écouteurs, des claviers, des écrans tactiles) et des touches de réglage OSD intégrées
La carte mère est équipée d'une fonction de conversion de puissance de sortie 5 V/3 A, il n'est pas nécessaire de connecter séparément une alimentation externe pour l'ordinateur monocarte.
Spécifications
Taille de l'écran : 11,6 pouces
Type de contact : Tactile capacitif à 5 points
Résolution : 1366 x 768
Profondeur de couleur : 16 M
Angle de vision : grand angle de vision de 178°
Type d'affichage : panneau IPS
Type d'écran : TFT-LCD
Alimentation externe : 12 V/2 A
Entrée numérique: interface compatible HDMI
Interfaces : 1x interface clavier, 1x alimentation sortie 5 V, 1x interface Mini HD, 1x interface tactile, 1x interface haut-parleur, 1x prise casque, 1x alimentation 12 V entrée
Système de compatibilité : Raspbian, Ubuntu, Windows, Android, Mac OS et Chrome OS, etc.
Zone active : 256,13 x 144 mm
Dimensions : 290,8 x 184,2 mm
Inclus
1 écran tactile capacitif de 11,6 pouces
1x câble USB-A vers USB-C
1x câble USB-A vers micro B
1x câble HD vers mini HD
1x câble Micro HD vers mini HD
1x carte de contrôle OSD
1x adaptateur secteur
1x Tournevis
2x Ruban
1x manuel
Téléchargements
Manuel
Wiki
Pour faciliter encore davantage l'utilisation de ce composant, toutes les communications sont effectuées exclusivement via I2C, en utilisant notre système pratique Qwiic. Cependant, nous avons toujours des broches espacées de 0,1' au cas où vous préféreriez utiliser une platine d'expérimentation. Le CCS811 est un capteur extrêmement populaire, fournissant des lectures pour les équivalents du CO2 (ou eCO2) en parties par million (PPM) et les composés organiques volatils totaux en parties par milliard (PPB). Le CCS811 possède également une fonction qui lui permet d'affiner ses lectures s'il a accès aux données d'humidité et de température. Heureusement, le BME280 fournit l'humidité, la température et la pression barométrique ! Cela permet aux capteurs de travailler ensemble pour donner des lectures plus précises et complètes que celles qu'ils pourraient fournir tous seuls. Nous avons également facilité l'interface avec les capteurs via I2C. Caractéristiques : Connecteur Qwiic activé Alimentation: 3,3 V Détection de composés organiques volatils totaux (COVT) de 0 à 1 187 parties par milliard Détection eCO2 de 400 à 8 192 parties par million Plage de température : -40 °C à 85 °C Plage d’humidité : 0--100 % HR, = -3 % de 20--80 % Plage de pression : 30,000 Pa à 110,000 Pa, précision relative de 12 Pa, précision absolue de 100 Pa Altitude : 0 à 30000 pieds (9,2 km), précision relative de 3,3 pieds (1 m) au niveau de la mer, 6,6 (2 m) à 30000 pieds
Inky Frame 5.7' est doté d'un joli et grand écran E Ink à sept couleurs avec beaucoup d'espace pour afficher des images, du texte, des graphiques ou des interfaces. Il y a cinq boutons avec indicateurs LED pour interagir avec l'écran, deux connecteurs Qw/ST pour brancher des sorties et un emplacement pour carte micro SD pour le stockage très important des photos de chats. Chaque cadre Inky est livré avec une paire de petits pieds en métal élégants pour que vous puissiez le poser sur votre bureau (et une sélection de trous de montage si vous préférez faire autre chose). Il y a également un connecteur de batterie pour que vous puissiez l'alimenter sans fils gênants, et quelques fonctionnalités d'économie d'énergie qui signifient que vous pouvez le faire fonctionner sur piles pendant des années.
Inky Frame est idéal pour :
Vérifier votre calendrier et vos rendez-vous à venir en un coup d'œil
Se fixe à la porte de votre bureau pour afficher vos disponibilités
Afficher des affiches, des citations ou des images de motivation (fongibles ou autres)
Affichage des lectures d'autres cartes environnementales connectées sans fil
Caractéristiques
Raspberry Pi Pico W à bord
Dual Arm Cortex M0+ fonctionnant jusqu'à 133 MHz avec 264 Ko de SRAM
2 Mo de mémoire flash QSPI prenant en charge XiP
Alimenté et programmable par USB micro-B
Sans fil 2,4 GHz
Écran EPD de 5,7' (600 x 448 pixels)
E Ink Gallery Palette 4000 ePaper
ACeP (Advanced Color ePaper) 7 couleurs avec noir, blanc, rouge, vert, bleu, jaune, orange.
Angle de vision ultra large – >170°
Pas de point – 0,1915 x 0,1915 mm
5x boutons tactiles avec indicateurs LED
Deux connecteurs Qw/ST pour connecter des dérivations
Emplacement pour carte microSD
Puce RTC dédiée (PCF85063A) pour un sommeil/réveil profond
Entièrement assemblé
Aucune soudure requise.
Bibliothèques C/C++ et MicroPython
Schématique
Inclus
1x Inky Frame 5,7' (avec Pico W)
2x pieds en métal
Téléchargements
MicroPython
(Apprendre) Premiers pas avec Inky Frame
(Lisezmoi) Installation de MicroPython
(Lisezmoi) FAQ MicroPython (et dépannage)
Téléchargez la marque pirate MicroPython (vous aurez besoin du Inky Frame.uf2)
Exemples MicroPython
Référence de la fonction PicoGraphics
C/C++
Exemples en C
Référence de la fonction picographique
L'écran tactile capacitif haute résolution Waveshare de 10,1 pouces est un écran tactile universel avec une résolution de 1920 x 1200, compatible avec la plupart des appareils HDMI standard. Il présente un design fin et léger, un couvercle en verre trempé rigide pour plus de durabilité, d'excellentes performances d'affichage et une expérience multi-touch fluide. De plus, la plaque arrière en métal intégrée assure la stabilité, permettant aux utilisateurs d'intégrer plus facilement l'écran dans des projets tout-en-un.
Caractéristiques
Écran IPS de 10,1 pouces avec 1920 x 1200 pixels
Tactile capacitif à 10 points avec panneau en verre trempé offrant une dureté jusqu'à 6H
Technologie de panneau entièrement laminé pour un meilleur effet d'affichage
Lorsqu'il est utilisé avec Raspberry Pi, il prend en charge Raspberry Pi OS, Ubuntu, Kali et RetroPie
En tant qu'écran d'ordinateur, il prend en charge Windows 7 et versions ultérieures.
Menu OSD (peut être utilisé pour le contrôle de l'alimentation, le réglage de la luminosité/du volume/de la rotation de l'image, etc.)
Sortie audio HDMI, prise casque 3,5 mm intégrée et haut-parleurs à 4 broches de haute qualité
Spécifications
Écran
IPS 10,1 pouces
Angle de vision
178°
Résolution
1920 x 1200 pixels
Zone de l'écran tactile
217,2 x 135,6 mm
Dimensions
239 x 147 mm
Gamme de couleurs
65% NTSC
Luminosité maximale
300 cd/m²
Contraste
1000:1
Réglage du rétroéclairage
Gradation des boutons
Taux de rafraîchissement
60 Hz
Interface d'affichage
HDMI standard
Alimentation
5 V (USB-C)
Consommation électrique maximale
6 W
Inclus
1x Écran tactile capacitif haute résolution de 10,1 pouces (10.1EP-CAPLCD)
1x Câble plat HDMI (1 m)
1x Câble USB-A vers USB-C (1 m)
1x Adaptateur micro HDMI
1x Adaptateur HDMI
1x Adaptateur HDMI vers micro HDMI
1x Câble PH1.25 à 4 broches vers type A
1x Stylet tactile capacitif
1x Câble à 3 broches
1x Câble HDMI 120 mm (2 pièces)
1x Chiffon de nettoyage
1x Alimentation électrique 5 V/3 A (UE)
1x Pack de vis
Téléchargements
Wiki
Vous trouverez ici toutes sortes de pièces, composants et accessoires dont vous avez besoin dans différents projets, depuis les simples fils, capteurs et écrans jusqu'aux modules et kits déjà pré-assemblés.