Ce module CAN est basé sur le contrôleur de bus CAN MCP2515 et l'émetteur-récepteur CAN TJA1050. Avec ce module, vous pourrez facilement contrôler n'importe quel appareil CAN Bus par interface SPI avec votre MCU, tel qu'Arduino Uno et ainsi de suite.
Caractéristiques
Prise en charge PEUT V2.0B
Taux de communication jusqu'à 1 Mo/s
Tension de fonctionnement : 5 V
Courant de fonctionnement : 5 mA
Interface : SPI
Téléchargements
Fiche technique MCP2515
Fiche technique TJA1050
Lorsque vous expérimentez régulièrement avec le Raspberry Pi et que vous connectez une variété de matériel externe au port GPIO via le connecteur, il se peut que vous ayez causé des dommages par le passé. La carte tampon Raspberry Pi d'Elektor est là pour éviter cela ! La carte est compatible avec les Raspberry Pi Zero, Zero 2 (W), 3, 4, 5, 400 et 500.
Les 26 GPIO sont protégées par des convertisseurs de tension bidirectionnels afin de protéger le Raspberry Pi lors de l'expérimentation de nouveaux circuits. Le circuit imprimé est destiné à être inséré à l'arrière du Raspberry Pi 400/500. Le connecteur à connecter au Raspberry Pi est un réceptacle 40 voies à angle droit (2x20). La platine est seulement un peu plus large. Un câble plat à 40 voies avec des connecteurs 2x20 appropriés peut être connecté au connecteur de sortie du tampon pour expérimenter avec par exemple un circuit sur une plaque d’expérimentation ou sur une platine.
Le circuit utilise 4x circuits intégrés TXS0108E de Texas Instruments. Le circuit imprimé peut également être monté sur un Raspberry Pi.
Téléchargements
Schematics
Layout
Le RFM95 est un module LoRa/SigFox utilisable avec Arduino/ESP32/Raspberry Pi et bien d'autres. Dans des conditions idéales, vous pouvez atteindre jusqu'à 2 km+ avec seulement une faible consommation d'énergie.
Il est équipé du modem longue distance LoRa qui offre une communication à spectre étalé ultra-long et une immunité élevée aux interférences. Grâce à la technique de modulation brevetée LoRa™, le RFM95 peut atteindre une sensibilité supérieure à -148 dBm en utilisant un cristal et une nomenclature à faible coût. La haute sensibilité combinée à l'amplificateur de puissance intégré de +20 dBm offre un budget de liaison de pointe, ce qui le rend optimal pour toute application nécessitant une portée ou une robustesse.
Caractéristiques
budget de liaison maximum : 168 dB
+20 dBm - 100 mW de sortie RF constante par rapport à Alimentation V
Sonorisation haute efficacité +14 dBm
Débit binaire programmable jusqu'à 300 kbps.
Haute sensibilité : jusqu'à -148 dBm.
Frontal pare-balles : IIP3 = -12,5 dBm.
Synchroniseur de bits intégré pour la récupération de l'horloge.
Excellente immunité au blocage.
Faible courant RX de 10,3 mA, rétention de registre de 200 mA.
Synthétiseur entièrement intégré avec une résolution de 61 Hz.
Modulation FSK, GFSK, MSK, GMSK, LoRa™ et OOK.
Détection du préambule.
Plage dynamique RSSI de 127 dB.
Détection RF et CAO automatiques avec AFC ultra-rapide.
Moteur de paquets jusqu'à 256 octets avec CRC.
Capteur de température intégré
Indicateur de batterie faible.
Dimensions : 16 x 16 mm
Applications
Relevé de compteur automatisé
domotique et immotique
Systèmes d'alarme et de sécurité sans fil
Surveillance et contrôle industriels
Systèmes d'irrigation longue distance
L'encodeur Zero Delay Encoder facilite la connexion de vos propres joysticks et boutons d'arcade et la connexion au Raspberry, au PC ou à d'autres appareils. Créez votre propre manette et profitez de vos jeux sans aucun compromis ou contrôlez votre projet de robot selon vos idées.
Caractéristiques
Compatible avec Linux, Windows, MAME et d'autres émulateurs et systèmes courants.
Base de contrôleur complète avec tous les câbles inclus
Prend en charge jusqu'à 12 boutons
Modes Auto, Feu et Turbo
Connexion supplémentaire : Sanwa/Seimitsu 5 broches
LED : 1 × LED d'alimentation, 1 × LED de mode
La livraison comprend un encodeur Zero Delay, un câble USB et un câble 13 × 4,8 mm.
NRF24L01 est une puce émetteur-récepteur monolithique universelle en bande ISM fonctionnant dans la bande 2,4-2,5 GHz. Caractéristiques
Émetteur-récepteur sans fil comprenant : Générateur de fréquence, type amélioré, SchockBurstTM, contrôleur de mode, amplificateur de puissance, amplificateur à cristal, modulateur, démodulateur
La sélection du canal de puissance de sortie et les paramètres du protocole peuvent être définis avec une consommation de courant extrêmement faible, via l'interface SPI.
En mode de transmission, la puissance de transmission est de 6 dBm, le courant est de 9,0 mA, le courant du mode accepté est de 12,3 mA, la consommation de courant du mode mise hors tension et du mode veille est inférieure
Antenne 2,4 GHz intégrée, prend en charge jusqu'à six canaux de réception de données
Taille : 15 x 29 mm (antenne comprise)
Ce module Crowtail 4G est un module sans fil LTE Cat1 haute performance. Il utilise le module de communication SIM A7670E de Simcom et communique via une interface UART, ce qui permet la transmission de données 4G et la communication vocale. Le module prend en charge plusieurs bandes LTE, dont B1/B3/B5/B7/B8/B20, ainsi que les réseaux WCDMA et GSM. De plus, il prend en charge divers protocoles tels que TCP/IP, FTP, HTTP, et plusieurs systèmes de navigation par satellite tels que GPS, GLONASS et BDS.
Le module est doté d'une interface de chargement et peut être alimenté par une batterie lithium 3,7 V ou une interface USB-C 5 V. Il possède également une prise casque de 3,5 mm et en connectant un casque avec microphone, il peut être utilisé pour passer et recevoir des appels téléphoniques. Sa taille compacte facilite son intégration dans divers appareils IoT et répond à divers besoins d'application. De plus, sa faible consommation d'énergie et ses performances fiables sont également les raisons pour lesquelles il est largement utilisé dans les domaines de l'IoT, de la domotique, de l'automobile et du contrôle industriel.
Caractéristiques
Intégration du module de communication A7670E, permettant la transmission de données 4G et la communication vocale avec une faible consommation d'énergie et une grande fiabilité
Prend en charge plusieurs bandes LTE, dont B1/B3/B5/B7/B8/B20, ainsi que les réseaux WCDMA et GSM
Prise en charge de divers protocoles tels que TCP/IP, FTP, HTTP, et plusieurs systèmes de navigation par satellite tels que GPS, GLONASS et BDS
Livrée avec une interface de chargement et une prise casque, qui peut être utilisée pour passer et recevoir des appels téléphoniques en connectant un casque avec microphone
Petit mais puissant, sa taille compacte facilite son intégration dans divers appareils IoT
Spécifications
Puce principale : SIM A7670E
LTE-FDD : B1/B3/B5/B7/B8/B20
GSM : 900/1800 MHz
Classe de puissance GSM/GPRS
EGSM900 : 4 (33 dBm ±2 dB)
DCS1800 : 1 (30 dBm ±2 dB)
Classe de puissance EDGE :
EGSM900 : E2 (27 dBm ±3 dB)
DCS1800 : E1 (26 dBm +3 dB/-4 dB)
Classe de puissance LTE : 3 (23 dBm ±7 dB)
Tension d'alimentation : 4 V ~ 4,2 V
Consommation : 3,8 V
LTE (Mbit/s) : 10 (DL)/5 (UL)
GPRS/EDGE (Kbit/s) : 236,8 (DL)/236,8 (UL)
Protocole : TCP/IP/IPV4/IPV6/Multi-PDP/FTP/FTPS /HTTP/HTTPS/DNS
Interface de communication : USB / UART
Mise à jour du firmware : USB/FOTA
Types de répertoire téléphonique pris en charge : SM/FD/ON/AP/SDN
Interfaces : 1x bouton d'alimentation, 1x BAT, 1x UART, 1x USB-C, 1x emplacement de carte SIM
Dimensions : 35 x 50 mm
Inclus
1x Crowtail-4G SIM-A7670E
1x Antenne 4G GSM NB-IoT
1x Antenne céramique GPS
Téléchargements
Wiki
Manuel de commandes AT A7670
Fiche technique A7670
Code source
Ce petit amplificateur mono est étonnamment puissant : capable de fournir jusqu'à 2,5 W dans des haut-parleurs d'impédance de 4 à 8 Ω. À l'intérieur de la puce miniature se trouve un contrôleur de classe D, capable de fonctionner entre 2,0 V et 5,5 V CC. L'amplificateur étant de classe D, il est très efficace, ce qui le rend parfait pour les projets portables et alimentés par batterie. Il dispose d'une protection thermique et contre les surintensités intégrée. Il existe même un potentiomètre de réglage du volume qui vous permet de régler le volume sur la carte par rapport au gain par défaut de 24 dB.
Les entrées A+ et A- de l'amplificateur passent par des condensateurs de 1,0 µF, elles sont donc entièrement « différentielles » – si vous n'avez pas de sorties différentielles, attachez simplement la broche audio à la masse. La sortie est « Bridge Tied » – ce qui signifie que les broches de sortie se connectent directement aux broches du haut-parleur, sans connexion à la masse. La sortie est une onde carrée PWM haute fréquence de 250 KHz qui est ensuite « moyennée » par la bobine du haut-parleur – les hautes fréquences ne sont pas entendues. Tout ce qui précède signifie que vous ne pouvez pas connecter la sortie à un autre amplificateur, elle doit piloter directement les haut-parleurs.
L'amplificateur est livré avec une carte de dérivation entièrement assemblée et testée, un connecteur pour le brancher sur une planche à pain et des borniers à vis de 3,5 mm afin que vous puissiez facilement attacher/détacher votre haut-parleur. Le haut-parleur n'est pas inclus , nous vous recommandons d'utiliser n'importe quel haut-parleur d'impédance de 4 Ω ou supérieure.
Caractéristiques
Puissance de sortie : 2,5 W à 4 Ω, 10% THD (distorsion harmonique totale), 1,5 W à 8 Ω, 10% THD, avec alimentation 5,5 V
50 dB PSRR (taux de réjection de l'alimentation) à 1 KHz
Conception sans filtre, avec perle de ferrite + condensateurs en sortie.
Gain fixe de 24 dB, potentiomètre de trim intégré pour régler le volume d'entrée.
Protection thermique et contre les courts-circuits/surintensités
Faible consommation de courant : 4 mA au repos et 0,5 mA à l'arrêt (en raison de la résistance de rappel sur la broche SD)
Un connecteur USB-C moderne facilite la programmation. En plus des broches, deux ports I2C Qwiic séparés vous permettent de connecter facilement des périphériques Qwiic. Nous avons exposé les broches SWD pour les utilisateurs plus avancés qui préfèrent utiliser la puissance et la vitesse des outils professionnels. Un connecteur USB-A est fourni pour les cartes de processeur prenant en charge l’hôte USB. Une batterie de secours est fournie pour les cartes processeur avec RTC. Si vous avez besoin d’un 'lot' de GPIO avec un module simple à programmer, prêt pour la commercialisation, l’ATP est le correctif dont vous avez besoin. Nous avons même ajouté un cavalier très pratique pour mesurer la consommation de courant pour les tests de faible puissance. Caractéristiques Connecteur M.2 Plage de tension de fonctionnement ~3,3 V à 6,0 V (via le VIN vers le régulateur de tension 3,3 V AP7361C) 3,3 V (via 3V3) Ports [1] 1 x USB de type C 1 x hôte USB de type A 2 x Qwiic activé I2C 1 x CAN 1 x I2S 2 x SPI 2 x UARTs 2 broches analogiques dédiées 2 broches PWM dédiées 2 broches numériques dédiées 12 broches de sortie d’entrée à usage général 1 connecteur 2x5 SWD Batterie de secours de 1 mAh pour RTC Boutons Réinitialisation Démarrage DEL Puissance 3,3 V Vis cruciforme Phillips #0 M2.5x3mm incluses
Vous pouvez programmer la puce nRF52840 directement pour tirer pleinement parti du processeur Cortex-M4, puis faire appel à la pile radio Nordic SoftDevice lorsque vous avez besoin de communiquer via BLE. Étant donné que l'API et les périphériques sous-jacents sont les mêmes pour le '832 et le '840, vous pouvez charger vos anciens projets nRF52832 avec le même code, avec une seule recompilation !
CircuitPython fonctionne mieux avec un accès au disque, et c'est la seule puce native BLE-plus-USB qui a la capacité de mémoire nécessaire pour l'exécution d'un petit interpréteur Python. La mémoire vive massive et la rapidité de la puce Cortex M4F sont une combinaison idéale.
Périphériques
Plusieurs GPIO, entrées analogiques, PWM, timers, etc. Et surtout, il dispose de l'USB natif ! Enfin, pas besoin d'une puce série USB séparée comme CP2104 ou FT232. La liaison série est gérée comme un descripteur CDC USB, et la puce peut agir comme un clavier, une souris, un périphérique MIDI, ou même un lecteur de disque. Cette puce possède un support TinyUSB - ce qui signifie que vous pouvez l'utiliser avec Arduino comme un périphérique USB natif et lui permettre d'agir comme UART (CDC), HID, Mass Storage, MIDI, et plus encore !
Caractéristiques
ARM Cortex M4F (avec accélération de la virgule flottante HW) fonctionnant à 64 MHz
1 MB flash et 256 KB SRAM
Pile USB native Open Source (préprogrammée avec le bootloader UF2)
Radio 2,4 GHz compatible Bluetooth Low Energy
Module certifié FCC / IC / TELEC
Jusqu'à + 8 dBm de puissance de sortie
Fonctionnement de 1,7 V à 3,3 V avec régulateurs de tension linéaires et CC/CC internes
21 GPIO, 6 x broches ADC 12 bits, jusqu'à 12 sorties PWM (3 modules PWM avec 4 sorties chacun)
Pin #3 LED rouge pour le clignotement à usage général, NeoPixel pour la rétroaction colorée
Pin d'alimentation/activation
Mesure 2,0 x 0,9 x 0,28 pouce (51 x 23 x 7,2 mm) sans les connecteurs soudés
Léger comme une (grosse ?) plume (6 grammes)
4 trous de montage
Bouton de réinitialisation
Connecteur SWD pour le débogage
La carte de support d’enregistrement de données présente les connexions pour I2C via un connecteur Qwiic ou des broches PTH espacées de 0,1' standard avec des connexions SPI et UART série pour enregistrer les données des périphériques utilisant ces protocoles de communication. La carte de support d’enregistrement de données vous permet de contrôler l’alimentation du connecteur Qwiic aussi bien sur la carte que sur un rail d’alimentation 3,3V dédié pour les périphériques non Qwiic afin que vous puissiez choisir à quel moment alimenter les périphériques à partir desquels vous surveillez les données. Il dispose également d’un circuit de charge pour les batteries Lithium-ion à une seule cellule ainsi que d’un circuit de batterie de secours RTC séparé pour maintenir l’alimentation d’un circuit horloge en temps réel sur votre carte processeur. Caractéristiques : Connecteur MicroMod M.2 prise microSD Connecteur USB-C Régulateur de tension 3,3V 1A Connecteur Qwiic Boutons de démarrage/réinitialisation Circuit de batterie et de charge de secours du CCF Régulateurs indépendants 3.3V pour bus Qwiic et modules périphériques Commandé par des broches numériques sur la carte processeur pour activer les modes de veille de faible puissance Vis cruciforme Phillips #0 M2.5 x 3 mm incluse
Le SparkFun Qwiic OpenLog est le cousin plus intelligent et plus beau du très populaire OpenLog, mais nous avons maintenant porté l'interface série d'origine sur I²C ! Grâce aux connecteurs Qwiic ajoutés, vous pouvez connecter en série plusieurs appareils I²C et les connecter tous sans occuper votre port série. Le Qwiic OpenLog peut stocker, ou « enregistrer », d'énormes quantités de données série, agissant comme une sorte de boîte noire pour stocker toutes les données générées par votre projet, à des fins scientifiques ou de débogage. En utilisant notre système Qwiic pratique, vous n'avez pas besoin de souder pour le connecter au reste de votre système. Cependant, nous avons toujours des broches espacées de 0,1' au cas où vous préféreriez utiliser une planche à pain. Comme son prédécesseur, le SparkFun Qwiic OpenLog fonctionne sur un ATmega328, qui fonctionne à 16 MHz grâce au résonateur intégré. L'ATmega328 est sûr d'avoir le chargeur de démarrage Optiboot chargé, permettant à l'OpenLog d'être compatible avec le paramètre de la carte « Arduino Uno » dans l'IDE Arduino. Il est important de savoir que le Qwiic OpenLog consomme environ 2 mA à 6 mA en mode veille (rien à enregistrer). Cependant, lors d'un enregistrement complet, l'OpenLog peut consommer 20 mA à 23 mA selon la carte microSD utilisée. Le Qwiic OpenLog prend également en charge l'étirement d'horloge, ce qui signifie qu'il fonctionnera encore mieux que l'original et enregistrera des données jusqu'à 20 000 octets par seconde à 400 kHz. Si le tampon de réception devient plein, cet OpenLog maintiendra la ligne d'horloge pour informer le maître qu'il est occupé. Une fois que Qwiic OpenLog termine une tâche, il libère l'horloge afin que les données puissent continuer à circuler sans corruption. Pour des performances encore meilleures, OpenLog Artemis est l'outil dont vous avez besoin, avec des vitesses de journalisation allant jusqu'à 500 000 bps.
Les fonctions
Enregistrement continu des données à 20 000 octets par seconde sans corruption
Compatible avec I²C 400 kHz haute vitesse
Compatible avec les cartes microSD de 64 Mo à 32 Go (FAT16 ou FAT32)
Chargement du chargeur de démarrage Uno afin que la mise à niveau du micrologiciel soit aussi simple que le chargement d'un nouveau croquis
Adresses I²C valides : 0x08 à 0x77
2x connexions Qwiic
Téléchargements
Schème
Fichiers Aigle
Manuel de connexion
Bibliothèque Arduino
GitHub
Ce module comprend une antenne de traçage intégrée et adapte l’IC à une empreinte approuvée par la FCC, et comprend des mécanismes de découplage et de synchronisation qui devraient être conçus dans un circuit à l’aide de l’IC nu nRF52840. L’émetteur-récepteur Bluetooth inclus sur le nRF52840 dispose d’une pile BT 5.1. Il prend en charge les protocoles sans fil Bluetooth 5, Bluetooth mesh, IEEE 802.15.4 (Zigbee & Thread) et 2.4Ghz RF (y compris le protocole RF propriétaire de Nordic) vous permettant de choisir l’option qui fonctionne le mieux pour votre application. Caractéristiques : ARM Cortex-M4 CPU avec unité à virgule flottante (FPU) Flash interne de 1 Mo -- Pour tous vos besoins de programme, SoftDevice et de stockage de fichiers ! 256kB de RAM (Mémoire Vive) interne -- Pour la gestion de la mémoire. Radio 2,4 GHz intégrée, prenant en charge : Bluetooth Low Energy (BLE) -- Avec prise en charge des périphériques et/ou des périphériques BLE centraux Bluetooth 5 -- Mesh Bluetooth! ANT -- Si vous voulez transformer l’appareil en moniteur de fréquence cardiaque ou d’exercice. Protocole RF propriétaire de Nordic -- Si vous souhaitez communiquer en toute sécurité avec d’autres appareils nordiques. Tous les périphériques d’E/S dont vous pourriez avoir besoin. USB -- Transformez votre nRF52840 en un périphérique de stockage de masse USB, utilisez une interface CDC (série USB) et plus encore. UART -- Interfaces série avec prise en charge du contrôle de flux matériel si désiré. I2C -- Interface de bus bidirectionnel à 2 fils préférée de tout le monde SPI -- Si vous préférez l’interface série 3+fils Convertisseurs analogique-numérique (ADC) -- Huit broches sur les entrées analogiques de support de mini-circuit nRF52840 PWM -- Le support de minuterie sur n’importe quelle broche signifie le support de PWM pour les DEL d’entraînement ou les servomoteurs. Horloge en temps réel (RTC) -- Gardez une trace étroite des secondes et des millisecondes, prend également en charge les fonctions de sommeil profond chronométré. Trois UARTs Primaire lié à l’interface USB. Deux UARTs matériels. Deux autobus I2C Deux autobus SPI Bus SPI secondaire principalement utilisé pour Flash IC. Traitement audio PDM Deux entrées analogiques Deux broches d’E/S numériques dédiées Deux broches PWM dédiées Onze épinglettes d’E/S à usage général »
Caractéristiques
Commande de moteur bi-directionnelle à deux voie.
Compatible avec les tension du moteur de 2,5 V à 9,5 V CC.
Courant maximal jusqu'à 1,0 A en continu et 1,5 A en crête (5 secondes)
Sortie 5 V (200 mA) pour alimenter le contrôleur.
Entrées compatibles avec logique1.8 V, 3.3 V et 5 V (Arduino, Raspberry Pi, etc).
Les composants à semi-conducteurs offrent un temps de réponse plus rapide et évitent l'usure des relais mécaniques.
Freinage régénératif
Fréquence PWM de contrôle de la vitesse allant jusqu'à 20 KHz (la fréquence de sortie est identique à la fréquence d'entrée).
Dimensions: 43 mm (L) x 35 mm (l) x 14 mm (h)
Le problème que rencontrent les débutants dans la commande d'un moteur à courant continu à balais
Maker Drive a été conçu en tenant compte des retours des utilisateurs, en particulier ceux qui l'utilisent pour la première fois. Si vous êtes un débutant et que vous avez besoin d'un simple commande moteur CC à balais pour construire un robot mobile ou autre, vous pouvez rencontrer certains des obstacles suivants :
Griller votre commande de moteur- De nombreux pilotes de moteur à bas prix ne sont pas équipés d'une protection contre l'inversion de polarité, ce qui peut griller votre circuit si vous inverser la polarité en branchant l'alimentation. Cela résulte en une commande de moteur grillée et une perte d'argent et de temps.
Trop encombrant pour les projets compacts - Certaines commandes de moteur sont équipées d'un grand dissipateur thermique et occupent trop d'espace.
Difficile à tester et à dépanner - Avec les commandes de moteur normaux, les débutants sont confrontés à un problème commun pendant la réalisation du projet - la difficulté de tester et de dépanner le circuit. En effet, même avec un schéma ou un diagramme clair, le circuit ne fonctionnera pas tout de suite dès que vous realisez les connexions. La plupart du temps, vous aurez besoin de tester ou de dépanner. Sans indicateur d'entrée et de sortie facile à utiliser, vous devrez écrire un programme pour tester la commande du moteur. Cela augmente la complexité du débogage car vous ne savez pas si le problème est causé par les connexions des fils par votre programme.
Alimentation séparée pour les moteurs à basse tension - De nombreux pilotes de moteur à bas prix ont un régulateur de tension linéaire de 5 V intégré, ce qui est idéal pour alimenter votre contrôleur tel est le cas pourArduino. Mais ce régulateur de tension linéaire ne fournira pas 5 V en sortie si Vin est inférieur à 7 V. Or, de nombreux petits moteurs de jouets utilisés dans les projets de bricolage ont une tension inférieure à 7 V. Ces moteurs sont adaptés pour être alimentés par deux piles AA ou AAA (3 V ou moins) ou une batterie Li-ion 18650/Li-Po à cellule unique (tension nominale de 3,7 V). Ainsi, vous aurez besoin de deux sources d'alimentation séparées, l'une pour les moteurs et l'autre pour obtenir une sortie stable de 5 V pour un contrôleur tel que la carte Arduino.
Maker Drive a été conçu pour résoudre les problèmes ci-dessus tout en ajoutant quelques fonctionnalités utiles :
Fool Proof - Maker Drive est équipé d'une protection contre les inversions de polarité sur la borne Vin/Vmotor/Vbatt (alimentation du moteur). Cette protection réduit considérablement le risque d'endommager la commande du moteur.
Design compact - Maker Drive est conçu pour être compact, à peu près de la même taille qu'une photo d'identité, 43 mm (L) x 35 mm (l) x 14 mm (h)
4 Boutons de test (2 pour chaque voie) - Testez facilement le moteur ou votre mécanisme sans contrôleur ni programmation. Maker Drive est livré avec deux boutons de test manuels pour chaque voie. En appuyant sur l'un des boutons, la sortie sera actionnée à pleine vitesse dans une direction (si un moteur est connecté) sur la voie respective. L'autre bouton commande la sortie dans une autre direction. Ces boutons sont utiles pour tester la direction, la connexion et le fonctionnement du moteur, même sans contrôleur. Vous pouvez également utiliser ces boutons comme bouton d'activation manuelle. Aucune programmation n'est nécessaire pour les utiliser.
4 Indicateurs LEDs (2 pour chaque voie) - Testez facilement votre code et vos connexions des fils. Grâce à ces LEDs indicatrices, vous pouvez vérifier la direction de la tension de sortie même sans connecter la commande à votre moteur. Et en combinant avec les boutons de test manuel, vous pouvez tester facilement le Maker Drive même sans contrôleur et moteur connectés. Vous pouvez également identifier facilement l'endroit où l'erreur se produit pour faciliter le dépannage. Bien sûr, aucune programmation n'est nécessaire ici non plus. Ces LEDs sont très utiles pour les tests et le dépannage.
Régulateur Buck-boost pour fournir une sortie de 5 V à partir d'une tension d'entrée de seulement 2.5 V- Il vous permet d'alimenter un contrôleur 5 V avec 2 batteries AA. Maker Drive peut produire une sortie de 5 V avec une tension d'entrée allant de 2,5 V à 9,5 V.
Cette sortie de 5 V peut fournir 200 mA à un circuit externe tel qu'un contrôleur (Arduino), ce qui vous épargne le souci de trouver une autre source d'alimentation pour votre contrôleur. Désormais, votre projet peut être alimenté avec une seule source d'alimentation. Et grâce à la vaste plage de tension d'entrée, vous pouvez alimenter le Maker Drive avec deux batteries AA ou AAA (1,5 V x 2 = 3 V) ou avec des batterie Li-ion ou Lipo à cellule unique dont la tension nominale est de 3,7 V.
Bien que Maker Drive ne soit pas un Shield Arduino, il est compatible avec un certain nombre de cartes principales Arduino :
Arduino Uno R3
Arduino Mega 2560
Arduino Nano
Arduino Pro Mini
En plus, il accepte 1,8 V, 3,3 V, 5 V logique (pour le contrôle) et est compatible avec des contrôleurs tels que Raspberry Pi, BeagleBone, ESP8266, ESP32, etc.
Exigences relatives au moteur que vous utilisez :
Moteur à balais CC (Deux voies)
Tension de fonctionnement de 2.5 V à 9.5 V CC
Courant nominal
Courant de crête
Sources d'alimentations suggérées
2 x batteries AA/AAA (2 x 1.5 V = 3.0 V)
3 x batteries AA/AAA (3 x 1.5 V = 4.5 V)
4 x batteries AA/AAA (4 x 1.5 V = 6.0 V)
1 x batterie Li-ion 18650 battery (1 x 3.7 V, 3.0 V to 4.2 V)
2 x batteries Li-ion 18650 batteries (2 x 3.7 V = 7.4 V, 6.0 V to 8.4 V)
1 x batteries Li-ion 14500 (1 x 3.7 V, 3.0 V to 4.2 V)
2 x batteries Li-ion 14500 (2 x 3.7 V = 7.4 V, 6.0 V to 8.4 V)
Documents
Fiche technique
Arduino Sketch: Selectionner PWM_PWM_DUAL sous exemple
Les fichiers Fritzing
La reconnaissance vocale, les commandes vocales, les gestes ou la reconnaissance d’image sont possibles avec les applications TensorFlow. Le Cloud est incroyablement robuste, mais la connexion continue nécessite de l’énergie et une connectivité qui ne sont peut-être pas disponibles. Edge Computing gère des tâches distinctes telles que déterminer si quelqu’un a dit 'oui' et répond en conséquence. L’analyse audio se fait sur la combinaison MicroMod plutôt que sur le web. Cela réduit considérablement les coûts et la complexité tout en limitant les fuites potentielles de renseignements personnels. Cette carte comprend deux microphones MEMS (un avec interface PDM, un avec interface I2S), un accéléromètre 3 axes ST LIS2DH12, un connecteur pour interface à une caméra (vendu séparément) et un connecteur Qwiic. Un connecteur USB-C moderne facilite la programmation et nous avons rendu disponible le connecteur JTAG pour les utilisateurs plus avancés qui préfèrent utiliser la puissance et la vitesse des outils professionnels. Nous avons même ajouté un cavalier pratique pour mesurer la consommation de courant pour les tests de faible puissance. Caractéristiques : M.2 MicroMod Keyed-E H4.2mm 65 pins SMD Connector 0.5mm Microphone numérique I2C MEMS PDM Invensense ICS-43434 (COMP) Microphone numérique PDM MEMS PDM Knowles SPH0641LM4H-1 (IC) Batterie au lithium ML414H-IV01E pour RTC Accéléromètre ST LIS2DH12TR (3 axes, ultra faible puissance) Connecteur FPC 24 broches 0,5 mm (connecteur caméra Himax) USB - C Connecteur Qwiic Prise MicroSD Phillips #0 M2.5x3mm vis incluse
Ce module Grove CAN-BUS basé sur GD32E103 adopte un tout nouveau design, utilise le microcontrôleur GD32E103 économique et haute performance comme contrôle principal et coopère avec un firmware que nous avons écrit pour compléter la fonction du port série vers CAN FD.
Caractéristiques
Prise en charge de la communication CAN : implémente CAN FD jusqu'à 5 Mb/s
Facile à programmer : prend en charge la commande AT qui permet une programmation simple du port série
Écosystème Grove : 20 x 40 x 10 mm de petite taille, connecteur Grove 4 broches pour plug and play, compatible Arduino
Ce module Grove CAN-BUS prend en charge la communication CAN FD (CAN with Flexible Data-Rate), qui est une extension du protocole CAN d'origine spécifié dans la norme ISO 11898-1 qui répond aux exigences accrues de bande passante dans les réseaux automobiles. Dans CAN FD, le débit de données (c'est-à-dire le nombre de bits transmis par seconde) est augmenté pour être 5 fois plus rapide que le CAN classique (5 Mbit/s pour la charge utile de données uniquement, le débit d'arbitrage est toujours limité à 1 Mbit/s pour compatibilité). Il prend en charge la commande AT qui permet une programmation simple du port série.
Ce module Grove CAN-BUS est basé sur GD32E103 avec une fréquence allant jusqu'à 120 MHz. Il a une taille flash de 64 Ko à 128 Ko et une taille SRAM de 20 Ko à 32 Ko.
Applications
Piratage automobile : permet à différentes parties du véhicule de communiquer entre elles, notamment le moteur, la transmission et les freins. Réglage des fenêtres, portes et miroirs.
Imprimantes 3D
Automatisation des bâtiments
Systèmes de contrôle d'éclairage
Instruments et équipements médicaux
Caractéristiques
MCU
GD32E103
Débit en bauds UART
Jusqu'à 115 200 (9 600 par défaut)
Débit en bauds CAN FD
Jusqu'à 5 Mb/s
Indicateur
LED TX et RX
Tension de travail
3,3 V
Connecteur grossier
Connecteur Grove à 4 broches pour brancher et jouer
Taille
20x40x10mm
Téléchargements
Fiche de données
GitHub
Ne serait-il pas sympa de piloter un petit écran OLED, de lire un capteur de couleur, ou même de faire clignoter quelques LED directement depuis votre ordinateur ? Bien sûr, vous pouvez programmer un Arduino ou un Trinket pour qu'il communique avec ces dispositifs et votre ordinateur, mais pourquoi votre ordinateur ne pourrait-il pas communiquer lui-même avec ces périphériques et autres capteurs ? Eh bien, maintenant votre ordinateur peut parler à des appareils en utilisant la carte FT232H Breakout d'Adafruit !
Que peut faire la puce FT232H ? Cette puce de FTDI est similaire à leur convertisseur USB-série mais ajoute un 'moteur série synchrone multi-protocole' qui lui permet de parler de nombreux protocoles communs comme SPI, I²C, UART série, JTAG, et plus encore ! Il y a même une poignée de ports GPIO numériques que vous pouvez lire et écrire pour faire des choses comme faire clignoter des LED, lire des interrupteurs ou des boutons, etc. Le FT232H Breakout est un petit couteau suisse pour les protocoles série pour votre ordinateur !
Cette carte est utile lorsque vous souhaitez utiliser Python (par exemple) pour tester rapidement un dispositif qui utilise I²C, SPI ou de simples E/S à usage général. Il n'y a pas de firmware à gérer, donc vous n'avez pas à vous occuper de comment envoyer/recevoir des données vers/depuis un intermédiaire Arduino qui les envoie/reçoit vers/depuis un capteur, un écran ou un autre composant.
Ce module possède une puce FT232H et une EEPROM pour la configuration.
Spécifications
Dimensions : 23 x 38 x 4 mm (0,9 x 1,5 x 0,2") 23 x 38 x 4 mm (0,9 x 1,5 x 0,2")
Poids : 3.4 g
Téléchargements
Fichiers CAD
Ce FeatherWing facilite l'ajout d'un enregistrement de données à n'importe quelle carte Feather que vous possédez. Vous obtenez à la fois une horloge en temps réel I²C (PCF8523) avec cristal de 32 KHz et batterie de secours, ainsi qu'une prise microSD qui se connecte aux broches du port SPI (+ broche supplémentaire pour CS).
Remarque : FeatherWing n'est pas livré avec une carte microSD.
Une pile bouton CR1220 est requise pour utiliser les capacités de secours de la batterie RTC. Si vous n'utilisez pas la partie RTC du FeatherWing, aucune batterie n'est requise.
Pour communiquer avec le support de la carte microSD , la bibliothèque SD standard de Worduino est recommandée. Un peu de soudure est nécessaire pour fixer les en-têtes à l'aile.
Brochages
Broches d'alimentation
Sur la rangée du bas, les broches 3,3 V (deuxième à gauche) et GND (quatrième à gauche) sont utilisées pour alimenter la carte SD et le RTC (pour soulager la pile bouton lorsque l'alimentation secteur est disponible)
Broches RTC et I²C
Dans le coin supérieur droit, SDA (à l'extrême droite) et SCL (à gauche de SDA) sont utilisés pour communiquer avec la puce RTC.
SCL - Broche d'horloge I²C à connecter à la ligne d'horloge I 2 C de votre microcontrôleur. Cette broche a une résistance pull-up de 10 kΩ à 3,3 V
SDA - Broche de données I²C à connecter à la ligne de données I 2 C de votre microcontrôleur. Cette broche a une résistance pull-up de 10 kΩ à 3,3 V
Il existe également une dérivation pour INT , la broche de sortie du RTC. Il peut être utilisé comme sortie d'interruption ou pour générer une onde carrée. Notez que cette broche est un drain ouvert - vous devez activer le pull-up interne sur la broche numérique à laquelle elle est connectée.
Broches SD et SPI
en partant de la gauche vous avez
SPI Clock (SCK) - sortie du ressort à l'aile
SPI Master Out Slave In (MOSI) - sortie du ressort à l'aile
SPI Master In Slave Out (MISO) - entrée aile vers ressort
Ces épingles sont au même endroit sur chaque plume. Ils servent à la communication avec la carte SD. Lorsque la carte SD n'est pas insérée, ces broches sont totalement libres. MISO devient tri-état lorsque la broche SD CS (sélection de puce) est tirée vers le haut
Cette carte support combine un écran TFT 2.4', six DEL adressables, un régulateur de tension intégré, un connecteur IO à 6 broches et une fente microSD avec la fente de connecteur M.2 broches afin qu’elle puisse être utilisée avec les cartes de processeur compatibles dans notre écosystème MicroMod. Nous avons également installé sur cette carte porteuse l’ATtiny84 d’Atmel avec 8Ko de flash programmable. Ce petit gars est préprogrammé pour communiquer avec le processeur sur I2C pour lire les boutons pressés. Caractéristiques : Connecteur MicroMod M.2 240 x 320 pixels, écran TFT 2,4' 6 DEL APA102 adressables Buzzer magnétique Connecteur USB-C Régulateur de tension 3,3 V 1 A Connecteur Qwiic Boutons de démarrage/réinitialisation Circuit de batterie et de charge de secours du CCF microSD Phillips #0 M2.5 x 3 mm vis incluse
Cette version du Micro OLED Breakout est exactement la même taille du non-Qwiic, avec un écran de 64 pixels de large et 48 pixels de haut et mesurant 0,66' de diamètre. Mais il a également été équipé de deux connecteurs Qwiic, ce qui le rend idéal pour les opérations I2C. Nous avons également ajouté deux trous de montage et un support de câble Qwiic pratique intégré dans une languette amovible sur la carte qui peut être facilement retiré grâce à un bord en V. Nous avons même veillé à inclure un pull-up I2C et un jumper ADDR à l’arrière de la carte, donc si vous avez vos propres pull-ups I2C ou si vous avez besoin de changer l’adresse I2C de la carte! Caractéristiques Connecteur Qwiic activé Tension de fonctionnement : 3,3 V Courant de fonctionnement : 10 mA (20 mA max) Taille de l’écran : 64x48 pixels (0,66' de diamètre) Monochrome bleu sur noir Interface I2C »
Le Sparkfun Qwiic GPIO est un appareil I²C basé sur le TCA9534 I/O Expander IC de Texas Instruments. La carte ajoute huit broches IO que vous pouvez lire et écrire comme n’importe quelle autre broche numérique sur votre contrôleur. Les détails de l’interface I²C ont été pris en compte dans une bibliothèque Arduino afin que vous puissiez appeler des fonctions similaires à pinMode et digitalWrite d’Arduino, vous permettant de vous concentrer sur votre création ! Les broches du TCA9534 sont des bornes de verrouillage faciles à utiliser; ne jamais visser un autre fil à cette place! Les bornes sont relativement spacieuses elles-mêmes, alors n’hésitez pas à fixer plusieurs fils dans une borne de terre ou d’alimentation. Avec trois cavaliers d’adresse personnalisables, vous pouvez avoir jusqu’à huit cartes GPIO Qwiic connectées sur un seul bus permettant jusqu’à 64 broches GPIO supplémentaires ! L’I²C par défaut est 0x27 et peut être modifié en ajustant les cavaliers sur le dos de la carte. Caractéristiques : Huit broches GPIO configurables disponibles Adresse I2C : 0x27 (par défaut) Les broches d’adresse permettent d’utiliser jusqu’à huit cartes sur un seul bus Registre d’inversion de polarité d’entrée Contrôler chaque broche d’E/S individuellement ou en même temps Sortie Open-Drain Active-Low Interrupt Output 2 x connecteurs Qwiic Dimensions : 60,96 mm x 38,10 mm
Caractéristiques
Plug & Play (aucun pilote requis), compatible avec Windows 10/8/7, Mac, Linux et Android prenant en charge OTG.
Dispositif de prise de voix, prise de voix en champ lointain jusqu'à 5 m et prend en charge un modèle de prise de vue à 360°
Algorithmes acoustiques implémentés :
DOA(Direction d'Arrivée),
AEC (annulation automatique de l'écho),
AGC (contrôle automatique du gain),
NS (suppression du bruit)
Prise audio intégrée, qui permet de brancher des écouteurs ou des haut-parleurs (haut-parleur non inclus)
Applications
Dispositif de prise de voix
Appareil domotique/bureautique
Assistant vocal en voiture
Appareil de santé
Robot d'interaction vocale
Autres applications
Spécifications techniques
XVF-3000 de XMOS
4 microphones numériques haute performance
Prend en charge la capture vocale en champ lointain
Algorithmes vocaux sur puce
12 indicateurs LED RVB programmables
Micros : MEMS MSM261D4030H1CPM
Sensibilité : -26 dBFS (omnidirectionnel)
Point de surcharge acoustique : 120 dB SPL
RSB : 63 dB
Alimentation : 5 V CC à partir d'un micro USB ou d'un connecteur d'extension
Dimensions : 77 mm (diamètre) Prise de sortie jack audio 3,5 mm
Pour faciliter encore davantage l'utilisation de ce composant, toutes les communications sont effectuées exclusivement via I2C, en utilisant notre système pratique Qwiic. Cependant, nous avons toujours des broches espacées de 0,1' au cas où vous préféreriez utiliser une platine d'expérimentation. Le CCS811 est un capteur extrêmement populaire, fournissant des lectures pour les équivalents du CO2 (ou eCO2) en parties par million (PPM) et les composés organiques volatils totaux en parties par milliard (PPB). Le CCS811 possède également une fonction qui lui permet d'affiner ses lectures s'il a accès aux données d'humidité et de température. Heureusement, le BME280 fournit l'humidité, la température et la pression barométrique ! Cela permet aux capteurs de travailler ensemble pour donner des lectures plus précises et complètes que celles qu'ils pourraient fournir tous seuls. Nous avons également facilité l'interface avec les capteurs via I2C. Caractéristiques : Connecteur Qwiic activé Alimentation: 3,3 V Détection de composés organiques volatils totaux (COVT) de 0 à 1 187 parties par milliard Détection eCO2 de 400 à 8 192 parties par million Plage de température : -40 °C à 85 °C Plage d’humidité : 0--100 % HR, = -3 % de 20--80 % Plage de pression : 30,000 Pa à 110,000 Pa, précision relative de 12 Pa, précision absolue de 100 Pa Altitude : 0 à 30000 pieds (9,2 km), précision relative de 3,3 pieds (1 m) au niveau de la mer, 6,6 (2 m) à 30000 pieds
Le SparkFun Power Delivery Board utilise un contrôleur autonome pour négocier avec les adaptateurs d’alimentation et passer à une tension supérieure autre que 5V. Il utilise le même adaptateur d’alimentation pour différents projets plutôt que de compter sur plusieurs adaptateurs d’alimentation pour fournir une sortie différente; il peut fournir la carte dans le cadre du système de connexion Qwiic de SparkFun, de sorte que vous n’aurez pas à faire de soudure pour comprendre comment les choses sont orientées. Le SparkFun Power Delivery Board tire parti de la norme de distribution d’alimentation à l’aide d’un contrôleur autonome de STMicroelectronics, le STUSB4500. Le STUSB4500 est un contrôleur de distribution d’alimentation USB qui traite les appareils récepteur de données. Il met en œuvre un algorithme propriétaire pour négocier un contrat de distribution d’électricité avec une source (c.-à-d. une prise murale de distribution d’électricité ou un adaptateur d’alimentation) sans avoir besoin d’un microcontrôleur externe. Cependant, vous aurez besoin d’un microcontrôleur pour configurer la carte. Les profils PDO sont configurés dans une mémoire non volatile intégrée. Le contrôleur fait tout le poids de la négociation de puissance et fournit un moyen facile de configurer sur I2C. Pour configurer la carte, vous aurez besoin d’un bus I2C. Le système Qwiic facilite la connexion de la carte d’alimentation à un microcontrôleur. Selon votre application, vous pouvez également vous connecter au bus I2C via les trous SDA et SCL. Caractéristiques : Plage de tension d’entrée et de sortie de 5-20V Courant de sortie jusqu’à 5A Trois profils d’alimentation configurables Commande automatique de l’évier Type-C™ et USB PD Certifié USB Type-C™ rév. 1.2 et USB PD rév. 2.0 (TID n° 1000133) Surveillance intégrée de la tension VBUS Pilotes de porte de commutation VBUS intégrés (PMOS)'
La SparkFun Thing Plus Matter est la première carte facilement accessible de ce type qui combine Matter et l'écosystème Qwiic de SparkFun pour le développement agile et le prototypage de dispositifs IoT basés sur Matter. Le module sans fil MGM240P de Silicon Labs offre une connectivité sécurisée pour les deux protocoles 802.15.4 avec communication Mesh (Thread) et Bluetooth Low Energy 5.3. Le module est prêt à être intégré au protocole Matter IoT de Silicon Labs pour la domotique.
Qu'est-ce que Matter ? En termes simples, Matter permet un fonctionnement cohérent entre les appareils domestiques intelligents et les plateformes IoT sans connexion Internet, même s'ils proviennent de fournisseurs différents. Ce faisant, Matter est capable de communiquer entre les principaux écosystèmes IoT afin de créer un protocole sans fil unique, facile à utiliser, fiable et sécurisé.
La Thing Plus Matter (MGM240P) comprend des connecteurs Qwiic et de batterie LiPo, ainsi que plusieurs connecteurs GPIO capables d'un multiplexage complet par le biais d'un logiciel. La carte comprend également le chargeur LiPo monocellulaire MCP73831 ainsi que la jauge de carburant MAX17048 pour charger et surveiller une batterie connectée. Enfin, un emplacement pour carte µSD est intégré pour tout besoin de mémoire externe.
Le module sans fil MGM240P est construit autour du SoC sans fil EFR32MG24 avec un processeur ARM Cortex-M33 à 32 bits fonctionnant à 39 MHz avec 1536 kb de mémoire Flash et 256 kb de RAM. Le MGM240P fonctionne avec les protocoles sans fil 802.15.4 courants (Matter, ZigBee et OpenThread) ainsi qu'avec Bluetooth Low Energy 5.3. Le MGM240P supporte le Secure Vault de Silicon Labs pour les applications Thread.
Spécifications
Module sans fil MGM240P
Construit autour du SoC sans fil EFR32MG24
Processeur Cœur ARM Cortex-M33 32 bits (@ 39 MHz)
Mémoire flash de 1536 Ko
256 Ko de RAM
Prise en charge de plusieurs protocoles sans fil 802.15.4 (ZigBee et OpenThread)
Bluetooth Low Energy 5.3
Prêt pour Matter
Prise en charge de Secure Vault
Antenne intégrée
Facteur de forme Thing Plus (compatible avec les fibres) :
Dimensions : 5,8 x 2,3 cm (2,30 x 0,9')2 5,8 x 2,3 cm (2,30 x 0,9')
2 trous de fixation :
compatible avec les vis 4-40
21 sorties GPIO
Tous les connecteurs ont une capacité de multiplexage complète par logiciel
Interfaces SPI, I²C et UART mappées par défaut sur les connecteurs étiquetés.
13 GPIO (6 étiquetés comme analogiques, 7 étiquetés comme GPIO)
Toutes les fonctions sont soit GPIO, soit analogiques.
Convertisseur numérique-analogique intégré (DAC)
Connecteur USB-C
Connecteur de batterie LiPo JST à 2 broches pour une batterie LiPo (non incluse)
Connecteur JST Qwiic 4 broches
Chargeur LiPo monocellulaire MC73831
Taux de charge configurable (500 mA par défaut, 100 mA en alternance)
MAX17048 Jauge de carburant LiPo monocellulaire
Emplacement pour carte µSD
Faible consommation d'énergie (15 µA lorsque le MGM240P est en mode faible consommation)
LED:
PWR - LED rouge d'alimentation
CHG - Voyant jaune d'état de charge de la batterie
STAT - Voyant d'état bleu
Bouton de réinitialisation :
Bouton-poussoir physique
Le signal de réinitialisation peut être lié à A0 pour permettre une utilisation en tant que périphérique.
Téléchargements
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Datasheet (MGM240P)
Fritzing Part
Thing+ Comparison Guide
Qwiic Info Page
GitHub Hardware Repo